Sustainability Roadshow

Outline

1. Environmental Issues

2. Integrated Environmental Protection - methodological Issues

3. Product Issues

- 4. Production related Issues
- 5. Summary

Discussion about environmental policies

Environmental protection is an integral part of the overall value chain of a vehicle

Outline

1. Environmental Issues

2. Integrated Environmental Protection - methodological Issues

- 3. Product Issues
- 4. Production related Issues
- 5. Summary

Design for Environment as key element for anticipatory environmental protection

The impact of the production process and of the product on the environment have to be judged in advance and entirely considered within business decisions.

6

Various challenges in the product development

Balancing of different demands is an ongoing task in the process of product development.

Elements of the environmental management system MBC/D focusing on Design for Environment

Life Cycle Assessment: Integral Part of our DfE Strategy Areas for Application...

System level

comparison of predecessor/ successor models

comparison of alternative drive-systems and fuels

comparison of different parts and materials

comparison of production processes

Life Cycle Assessment new C-Class

smart electric drive versus gasoline Greenhouse gas emissions Renewable energy 20.000. 15.000. kg CO₂ equivalents Lifecycle stage -57% -28% 10.000. 5.000 Closing the loops 0 Petrol-driven smart fortwo electric smart fortwo electric smart drive (EU electricity drive (wind-generated electricity)* mix)* Usage (120 Tkm) Manufacturing Recovery Over the entire life cycle contributions to the greenhouse effect made by the smart electric drive with renewable

Life Cycle Assessment: Alternative propulsion systems

energy is almost 60 percent less than the smart gasoline. Roadshow

Lightweight construction – Life Cycle Assessment of component manufacturing

Comparison of material- and component manufacturing (functional unit : 1 kg steel component)

- Steel: Only small improvements are expected for future scenarios. Overall, the lowest effort for the production - despite extra weight.
- Aluminium: Reducing energy consumption in electrolysis (scenario "trend") is compensated by higher import mix especially from China. Use of renewable energy results in a significant leap in the Life Cycle Assessment into the direction of steel.
- Magnesium: Significant difference between today's Pidgeon-process (thermal energy) and electrolysis.
- **CFK:** Significant improvement with hydroelectric power and optimized production processes.

Resource efficiency

Resource consumption and implications

The world wide production of raw materials has increased during the last 100 years by the factor 5 to 1000.

Source: www.mining-technology.com

Source: Wikipedia

Clear need to enhance resource efficiency

Resource protection: new C-Class Material- and energy resources

Weight reduction up to 100 kg through increased utilization of lightweight materials and other measures.

Energy resources [GJ/vehicle]

Resource protection: new C-Class...

Due the increasing use of secondary and renewable raw materials, the new C-class makes an active contribution to resource protection.

Outline

- 1. Environmental Issues
- 2. Integrated Environmental Protection methodological Issues

3. Product Issues

- 4. Production related Issues
- 5. Summary

Euro 6 PC Registration in Germany 2013(Prefullfilment)

17

The Road to Emission-Free Mobility

The Road to Emission-Free Mobility Battery-operated electric vehicles

- Production start under series conditions since end of 2009
- Maximum range about 140 kilometers
- Available with rental battery since summer 2012

- Presented at the IAA 2013
- Maximum range about 200 kilometers
- Market launch in the USA in Spring 2014, market launch in Europe planned for Fall 2014.

- Market launch in series in 2013
- At 552 kW/1000 Nm mostpowerful electric sports car in the world
- Maximum range about 250 kilometers

DENZA

- Vehicle with fast-charging station developed especially for the Chinese market
- World premiere at Auto China 2014, Market Iaunch in China during 2014

The Road to Emission-Free Mobility Electric vehicles with fuel-cell powertrain

- Production start under series conditions since end of 2007
- World tour during F-CELL World Drive 2011
- Cooperation of Daimler, Nissan and Ford provides for launch of first competitive electric vehicle with fuel cell drive as of 2017

Energy from the air and hydrogen: The fuel cell principle

Packaging of Fuel Cell System

Through a further modularization of the fuel cell specific components, the packaging of future generations of FC vehicles will be simplified.

Significantly smaller dimensions will allow a accommodation in the engine compartment of a conventional vehicle.

Technical Advancements of Daimler's Fuel Cell Vehicles

From generation to generation great technical improvements in numerous technical areas.

The world's most economical executive class car without any compromises in cargo capacity!

The world's most economical luxury-class model without any compromises in cargo capacity!

Environmental balance new S-Class

S400 HYBRID compared to predecessor

New S-Class S 400 HYBRID:147Predecessor S 400 HYBRID:186

147 g CO₂/km 186 g CO₂/km

Over the entire life cycle the new S 400 HYBRID emits 18 % less CO_2 emissions than the predecessor. Approximately 15% are generated by the vehicle production and 85% during vehicle usage.

Environmantal balance new S-Class PLUG-IN HYBRID

S500 PLUG-IN HYBRID compared to S500

Depending on the electricity supply the new S-Class PLUG-IN HYBRID emits 39 to 50 tons of CO_2 - emissions over the entire lifecycle, which corresponds to a reduction up to 54 percent on the S500.

Green electricity

Electric mobility - Provision of electricity from renewable energy sources

Our road to sustainable mobility

High-Tech combustion engines A 180 CDI BE Edition 92 gCO₂/km Actros gCO₂/tons per kilometer

Hybridization

S 500 PLUG-IN HYBRID

Hauptbairthor

Citaro G BlueTec HYBRID 20 gCO₂/km per passenger

Emission-free

driving (Battery or fuel cell)

B-Class Electric Drive

Fuso Canter E-CELL gCO₂/km

29

Outline

- 1. Environmental Issues
- 2. Integrated Environmental Protection methodological Issues
- 3. Product Issues
- 4. Production related Issues
- 5. Summary

Environmental Due Diligence has become a regular part of internal Daimler management processes

Goal: Provision and aggregation of information to achieve transparency of risks and hazards

Areas of application:

1. Internal Risk Management

German legislation (KonTraG, AktG) requires the establishment of a company-wide risk assessment system

2. M&A Transactions

Differentiation in

- Commercial (Position in market and competition)
- Technical (Analysis of products and production)
- Financial (Analysis of finances and taxation)
- Legal (Analysis of legal situation)
- Environmental (Environmental risk assessment)

3. Safeguarding of Investments

Safeguarding of capital investments in conflict regions by German Federal Guarantees Roadshow

During a due diligence process several environmental areas are assessed

A05 Enforcement of Soil/Groundwater Redevelopment Measures								ge 1 of
AD4 Facilities and Structures								
	A03 Prior Utilisation of the Manufacturing S		Page 1 of 1					
A	02 Proofs and Documentation		Page 1			1 N		
A01	Known Soil and Groundwater Contamination Incidents			Page 1 of 1				
-			Points	Ε,	6	N		10
1	Is their any knowledge about contaminations on	No, area has been examined but nothing was revealed	10					- 11
	the site area and its immediate neighborhood	Yes, and redevelopment has been conducted	8		6			- 88
	and how has it been delt with?	Yes, redevelopment is in the process	4					
		Yes, examination is in the process	2					
		Yes, but examinations on the extent have not been conducted set	0					
						_		10
2	Are soil and/or groundwater polluted?	Neither	10					
-		Onbesni	6		10			
		Soil and groundwater are affected	ň					
	If not evernined yet, skin questions 3 to 5	Not examined set	0					
	n not exernined yet, skip gaestions 5 to 5	not examined yet						10
3	How many singular locations of soil and (or	Number of loanting, per 10000 m ² / 0.01	10					
3	groundwater contamination have been identified?	Aunder on ocasions per tobolo ni < 0,01			4		- 1 - C	- 11
	groundwater containing for have been reentined?	(0.05			7			
		10,00						
		(0,0/5						
		<0,1	2					
		>0,1	0					• E
4	Leastion of the major conteminated leastion of	44 14 JUL 1			-			
4	Location of the major contaminated locations?	None identified	10					
		Area with groundwater atfluent towards the site	8		6			- 11
		Central area of the manufacturing site	4					
		Area with groundwater draining off the site	j			_		
-				_	_		- L L L	- H
5	Have those locations been reported to the	No, since none identified	10					
	authorities?	authorities are informed	7		4		日亡	
		Authorities are partly informed	3					
		Authorities are not informed	D				-1-4	
		A01 max. performance value: 300 Point	ts			ł	⊣	
=Deg	ree of Accomplishment; G=Factor of Significance;			Dr. Schwarz	: / Dr. Ecker			
N=ExG=Perform ance Value Page 1					ecker/oeko/.	. /A_Soil xls		

A comrehensive 'Interne Due Diligence of the BU is submitted to the Top Management

Confirmation of Top Managements
comits the plant manager
to implement recommendations

Significant improvement of environmental performance, Significant risk reduction since 2000 over 2004 and 2009/10

TOP-Measures CO₂-Reduction

- Shut down of roboter and laser equipement
- Utilizing of standby and load level
- Vision of intelligent factory
 3.000 MWh/a

– Simulation Painting Prozecess

2

3

- Increase of process windows
- Reduction of rate of descent
- Optimizing process control

- 150.000 MWh/a

- Environmental engineering powertrain plants

- Increase of cooling liquid temperature from 22°C ro 28°C
- Redcution process air flow
- Optimizing washing maschine

- 165.000 MWh/a

Energy efficient platn operation

green IT

5

- Optimizing shut down times
- Reducing base loads
- Energy consumption as one key production indicator

Project Optiprint

- Procurement of energy efficient hardware
- Utilizing, wake on lan" for maintainace and updates
- Automated shut dwon

— Extension of own power plant opferations

- In depth anaylsis of site specific energy demands and generating options
- Renewable Energy

CO₂-Ziel Daimler-Targest in EU Business Units

> Clear assigned targets on BU level

> Major production volume increase (doubling in all BUs, except Buses, more than trippling in Vans)

Outline

- 1. Environmental Issues
- 2. Integrated Environmental Protection methodological Issues
- 3. Product Issues
- 4. Production related Issues
- 5. Summary

Significant environmental protection goals and fields of action are positioned in Daimler Sustainability Program

	Climate protection & energy		Air quality & health		Resource protection					
and ent	Reduction CO ₂ - emissions vehicle	-30% 2007-2016	Pre-discharge Euro 6 Norm vehicle	50% Until the end of 2014	Use of renewable raw materials vehicle	+ 25% ²⁰¹⁰⁻²⁰¹⁵				
search	Reduction CO ₂ -emissions light commercial vehicle	-10% 2010-2014	Introduction EEV engines for all transporters	100% Until the end of 2013	Use of secondary raw materials, emissions light commercial vehicle	+ 25% ²⁰¹⁰⁻²⁰¹⁵				
Re De	Reduction fuel cons. light commercial vehicle	-20%	Type approval Euro 6 commercial vehicle	30% Until the end of 2013						
use,	Reduction specific CO ₂ -emissions plant	-20% 2007-2015		100% achieved	Higher utilization car2go	X 10				
uction, ecovery	Reduction absolute CO ₂ - emissions plants (EU)	-20%			Construction of H ₂ - filling stations	400 Until 2023				
Prod	Reduction of CO ₂ - und No Life Cycle of a new vehicl	NOx-emissions throughout the whole nicle generation.		10-20% vs. predecessor	Recovery rate end-of-life vehicle	95% Until 2015				
	Ensure the worldwide legal regulations as the basis of our actions.									