Commerzbank AG Sustainability Conference

Dr. Christian Mohrdieck

Director

Drive Development Fuel Cell System

Group Research & Mercedes-Benz Cars Development

Our world is changing – Individual mobility is changing, too.

Globalization

- Global networks
- Worldwide cooperation
- Shifting of markets
- Increasing competition

Shortage of resources

- Shortage of natural resources
- Demand for alternative energy sources
- . . .

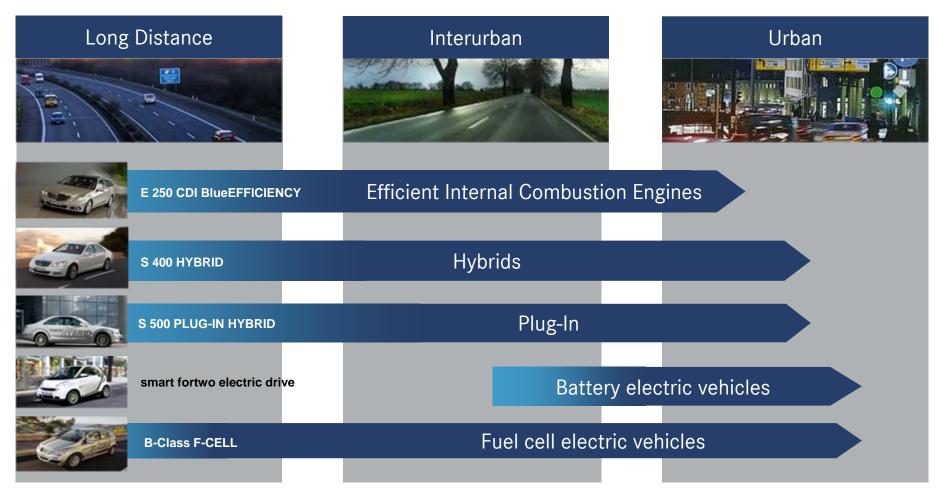
Change of values

- "Green" awareness
- Individualization
- Additional forms of mobility
- New communication channels

Legislation

- National emission regulations
- National safety ratings
- Customs & trade restrictions
- Local production

Technology


- Powertrain innovations
- New materials and procedures
- . . .

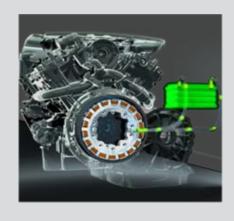
Urbanization

- Mega-Cities
- Shortage of space
- New mobility requirements
- Areas with restricted access

Drive train portfolio for tomorrows mobility Different use cases and options

Technology portfolio for sustainable mobility

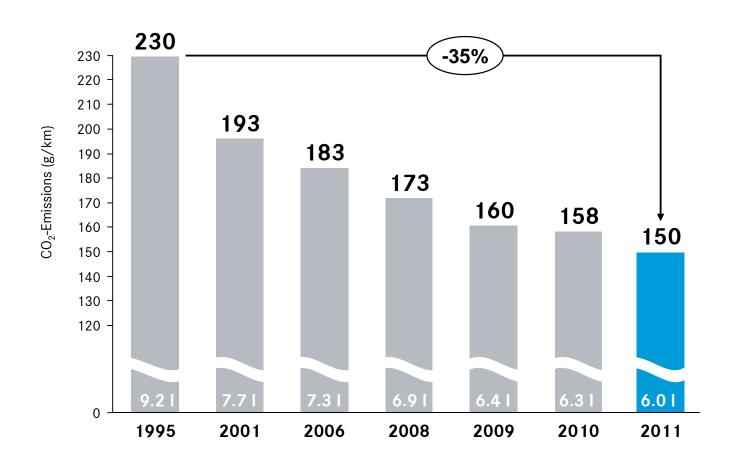
l.


High-tech combustion engines

CDI, CGI, BlueTEC

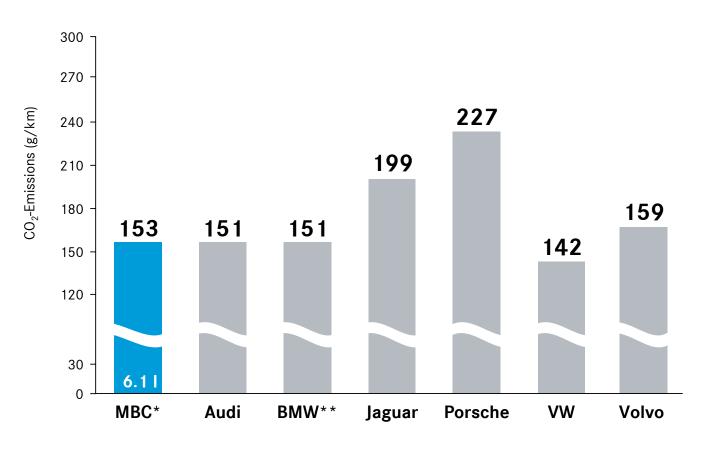
Combustion engines with hybridization

HYBRID, BlueTEC HYBRID,
Plug-in HYBRID



Electric vehicles with battery and fuel cell

E-CELL, F-CELL



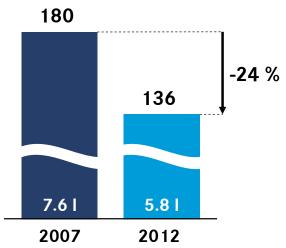
CO₂-Emissions: Biggest improvements of all OEMs in 2011

CO₂- Emissions of new cars registered in Germany in 2011

- * Mercedes-Benz Cars incl. smart and excl. Vans
- ** BMW incl. Mini

Source: Federal Motor Transport Authority (KBA); auto, motor und sport 5/2012

Mercedes-Benz C180 CGI BLUE EFFICIENCY

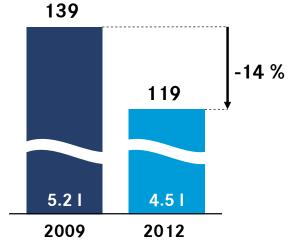

115 kW

5.8 I/100 km (41mpg, NEDC)

136 g CO₂

- 24 % versus market launch in 2007

Mercedes-Benz E220 CDI BLUE EFFICIENCY

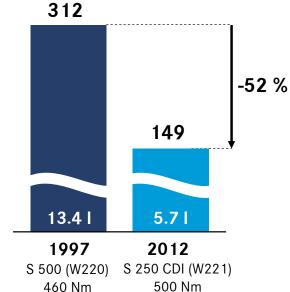

125 kW

4.5 I/100 km (52mpg, NEDC)

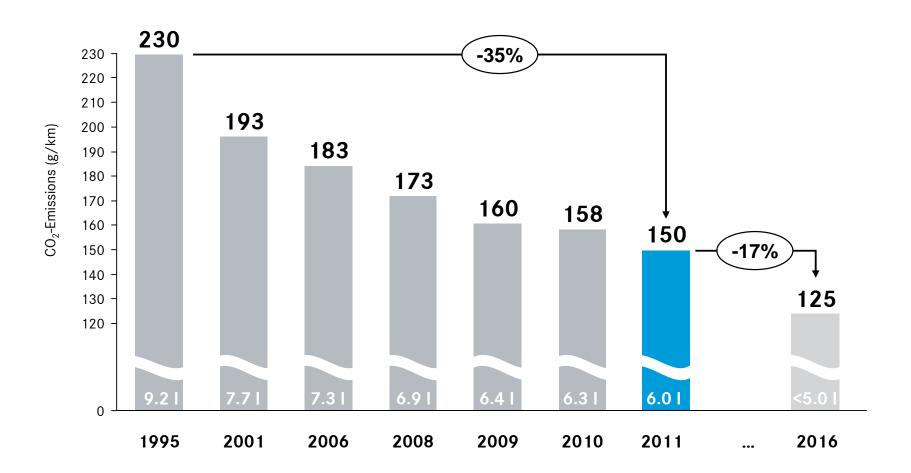
119 g CO₂

- 14 % versus market launch in 2009

Mercedes-Benz S250 CDI BLUE EFFICIENCY


150 kW

5.7 I/100km (41mpg, NEDC)


149 g CO₂

The world's most economical luxury saloon

We are on track to achieve the 2016 EU target

The new Actros: We set a fuel efficiency record again!

Actros 1844 (Euro V)

New Actros 1845 (Euro VI)

Fuel consumption:
27.1

I/100 km

-6

-2

25.1 I/100 km

25.9 I/100 km

-4.5 %

Technology portfolio for sustainable mobility

High-tech combustion engines

CDI, CGI, BlueTEC

11.

Combustion engines with hybridization

HYBRID, BlueTEC HYBRID,
Plug-in HYBRID

Electric vehicles with battery and fuel cell

E-CELL, F-CELL

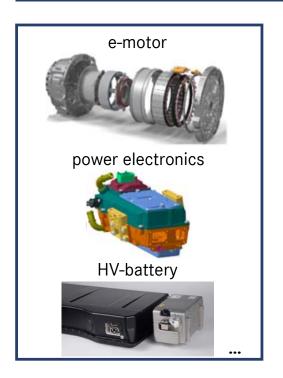
Hybrid vehicles of Mercedes-Benz

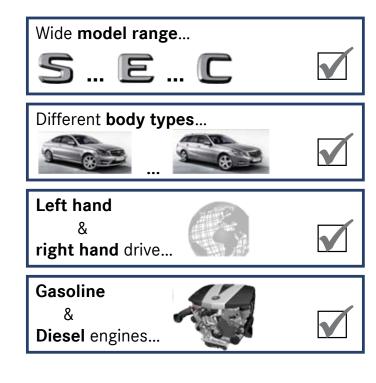
S400 HYBRID: **7.9** I/100km (**186** g/km)

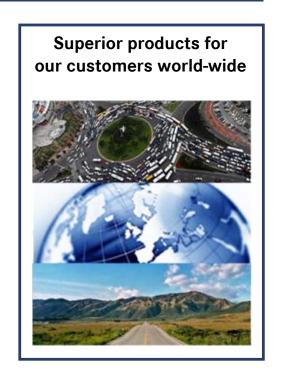
ML450 HYBRID: **7.7** I/100km (**182** g/km)

E300 BlueTEC HYBRID: **4.2** I/100km (**109** g/km)

E400 HYBRID: **37 mpg** (adjusted)


3.2 I/100km (**74** g/km)


Scalable module hybrid system allows for maximum customer benefits and minimizes costs


Standardized hybrid **modules** ...

... can be **combined** with various vehicle/powertrain configurations ...

... to meet world-wide **customer** expectations!

14

Daimler Product Portfolio Alternative Drivetrains

Distribution and other Commercial Vehicles

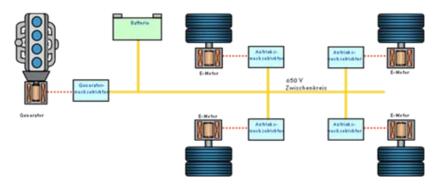
Freightliner M2^e Hybrid

Mercedes-Benz Atego BlueTec Hybrid

Mercedes-Benz Vito E-CELL

Mercedes-Benz Sprinter NGT

Mercedes-Benz NGT Econic



FUSO Canter Eco Hybrid

Daimler Hybrid-Bus: Mercedes-Benz Citaro G BlueTec Hybrid

Diesel-Electric Hybrid Concept

Serial Hybrid power train

- Up until now, the only hybrid bus which can run for some time on electricity only
- Electric wheel hub motor
- World wide largest Lithium-Ion battery in mobile application (max. 240 kW)

Technology portfolio for sustainable mobility

High-tech combustion engines

CDI, CGI, BlueTEC

Combustion engines with hybridization

HYBRID, BlueTEC HYBRID,
Plug-in HYBRID

III.

Electric vehicles with battery and fuel cell

E-CELL, F-CELL

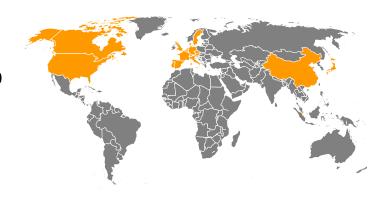
More than 3.000 electric vehicles on the road since 2011

Mercedes-Benz A-Class E-CELL smart fortwo electric drive

Mercedes-Benz SLS AMG E-CELL Mercedes-Benz B-Class F-CELL Mercedes-Benz Vito E-CELL

70 kW, 290 Nm	30 kW, 120 Nm	392 kW, 880 Nm	100 kW, 290 Nm	60 kW, 280 Nm
In series production	In series production	Market entry in 2013	In series production	In series production
250km	140 km	200 km	400 km	130 km

Purely electric driving for everyone - smart fortwo electric drive in "large scale" production



Zero-Emission-Mobility and fascinating driving experience: SLS AMG E-CELL

Worldwide Fleet Operation with Daimler's Battery Electric Vehicles

- > World wide fleet operation in diverse demonstration projects in Northern America, Europe and Asia from 2010
- Operation of 1500 electric smarts, 500 A-Class E-CELLs and 500 Vito E-CELL
- > From 2012 the smart electric drive (phase 3) will be the first commercially sold battery electric vehicle from Daimler

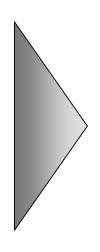
Technical Data					
Vehicle	smart fortwo electric drive (phase 2)	A-Class E-CELL	Vito E-CELL		
Motor	Output: 30 kW (41 PS) Torque: 120 Nm	Output: 70kW (95 PS) Torque: 290 Nm	Output: 60 kW (80 PS) Torque: 280 Nm		
Range (NEFZ)	140 km	200 km	130 km		
Top speed	100 km/h (limited)	150 km/h	90 km/h (limited)		
Battery	Lithium-lon-Battery, Capacity: 16,5 kWh	Lithium-lon-Battery, Capacity: 35,5 kWh	Lithium-lon-Battery, Capacity: 36 kWh		

Daimler has the target to commercialize battery electric vehicles in the foreseeable future

Worldwide Fleet Operation with Daimler's Fuel Cell Electric Vehicles

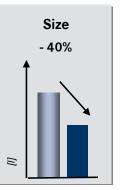
- New fleet operations has started in Germany, Europe and USA from 2010
- Operation of 200 Mercedes-Benz B-Class F-CELL, 30 Citaro FuelCELL Hybrid Busses and 3 Mercedes-Benz HySys Sprinter
- Worldwide largest Fuel Cell Fleet, over 4 mio. km operating experience
- All fleet operations / demonstrations have to be recognized as first steps to a later commercialization

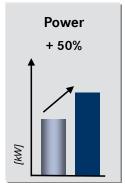


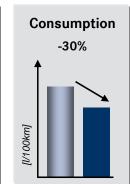


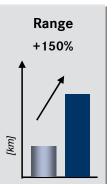
Daimler has the target to commercialize fuel cell vehicles in the foreseeable future

Daimler B-Class F-CELL – Current generation of Fuel Cell vehicles

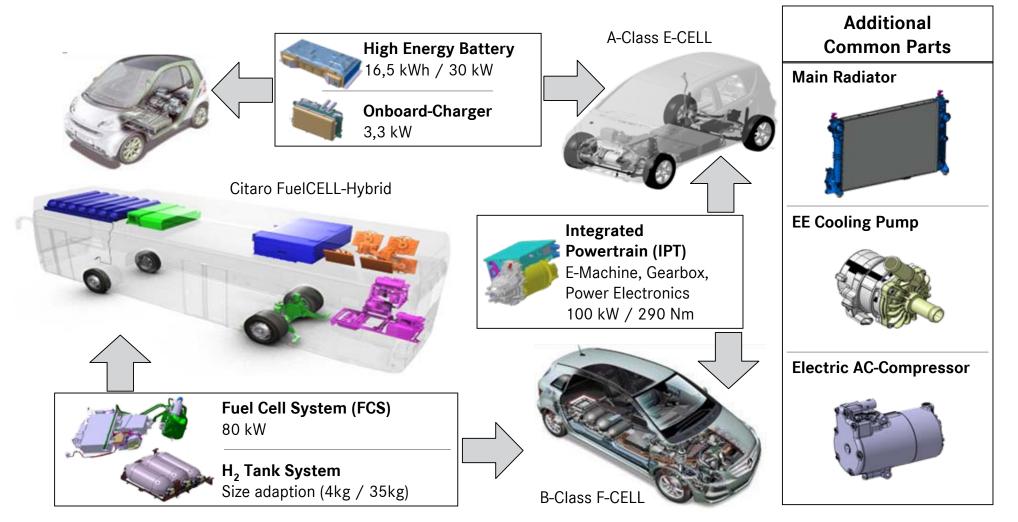







B-Class F-CELL:

- Higher stack lifetime >2000h
- Improved Performance (65kW → 100kW)
- Improved Reliability
- Higher Range (160km → 400km)
- Improved cold start capability (-25 C°)
- Lithium-Ion Battery

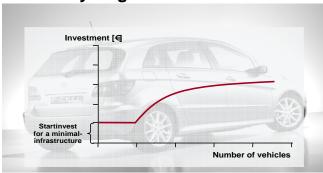


Vehicle overlapping module strategy as precondition for economic viability

Challenge of infrastructure – in the past and today

1888 – Lack of gas stations

Lack of public and private charging stations


Lack of H₂infrastructure
(production and
retailing)

Today

Summary

Financial aspects

- ➤ H₂-infrastructure requires start-up investments
- ➤ In long term view the Business Case is positive

Public Charging Infrastructure

- ➤ The investment for public charging infrastructure is proportional to vehicle sales
- Negative Business Case for Public AC Charging stations expected

Conclusion

- ➤ Battery electric and fuel-cell electric vehicles will both be needed to achieve our CO2 reduction targets
- ➤ Both technologies need supporting infrastructure. FCEVs in particular need a start invest to overcome the initial hurdle.
- > Joint efforts by industry and government have to prepare the markets and initiate infrastructure build-up

Mercedes-Benz F-CELL World Drive - maturity proven!

Summary: With our technology portfolio we are prepared for the Future

High-tech combustion engines

CDI, CGI, BlueTEC

Combustion engines with hybridization

HYBRID, BlueTEC HYBRID,
Plug-in HYBRID

Electric vehicles with battery and fuel cell

E-CELL, F-CELL

Disclaimer

This document contains forward-looking statements that reflect our current views about future events. The words "anticipate," "assume," "believe," "estimate," "expect," "intend," "may," "plan," "project," "should" and similar expressions are used to identify forward-looking statements. These statements are subject to many risks and uncertainties, including an adverse development of global economic conditions, in particular a decline of demand in our most important markets; a deterioration of our funding possibilities on the credit and financial markets; events of force majeure including natural disasters, acts of terrorism, political unrest, industrial accidents and their effects on our sales, purchasing, production or financial services activities; changes in currency exchange rates; a shift in consumer preference towards smaller, lower margin vehicles; or a possible lack of acceptance of our products or services which limits our ability to achieve prices as well as to adequately utilize our production capacities; price increases in fuel or raw materials; disruption of production due to shortages of materials, labor strikes, or supplier insolvencies; a decline in resale prices of used vehicles; the effective implementation of cost-reduction and efficiency-optimization measures; the business outlook of companies in which we hold a significant equity interest, most notably EADS; the successful implementation of strategic cooperations and joint ventures; changes in laws, regulations and government policies, particularly those relating to vehicle emissions, fuel economy and safety; the resolution of pending governmental investigations and the conclusion of pending or threatened future legal proceedings; and other risks and uncertainties, some of which we describe under the heading "Risk Report" in Daimler's most recent Annual Report. If any of these risks and uncertainties materialize, or if the assumptions underlying any of our forward-looking statements prove incorrect, then our actual results may be materially different from those we express or imply by such statements. We do not intend or assume any obligation to update these forward-looking statements. Any forward-looking statement speaks only as of the date on which it is made.