Axonal transport and neurological disease

James N. Sleigh ^{1,2,4}, Alexander M. Rossor ^{1,4}, Alexander D. Fellows ¹, Andrew P. Tosolini ¹ and Giampietro Schiavo ^{1,2,3*}

Abstract | Axonal transport is the process whereby motor proteins actively navigate microtubules to deliver diverse cargoes, such as organelles, from one end of the axon to the other, and is widely regarded as essential for nerve development, function and survival. Mutations in genes encoding key components of the transport machinery, including motor proteins, motor adaptors and microtubules, have been discovered to cause neurological disease. Moreover, disruptions in axonal cargo trafficking have been extensively reported across a wide range of nervous system disorders. However, whether these impairments have a major causative role in, are contributing to or are simply a consequence of neuronal degeneration remains unclear. Therefore, the fundamental relevance of defective trafficking along axons to nerve dysfunction and pathology is often debated. In this article, we review the latest evidence emerging from human and in vivo studies on whether perturbations in axonal transport are indeed integral to the pathogenesis of neurological disease.

Intracellular cargo trafficking is tightly and spatiotemporally regulated to maintain cell organization, homeostasis and survival, and is particularly crucial for nerve cells owing to their extreme anatomical and biochemical polarization. Neurons shuttle diverse substances along axon microtubules through a bidirectional, ATP-dependent process known as axonal transport. Anterograde transport, from the cell body to the axon tip, is driven by the kinesin superfamily of motor proteins1 and delivers substances such as RNAs, proteins and organelles towards growth cones and synapses². In the opposite direction, retrograde transport is dependent on cytoplasmic dynein³ and is essential for processes such as neurotrophic factor signalling⁴, autophagy-lysosomal degradation^{5,6} and the response to nerve injury7. Axonal transport thus encompasses various long-distance intracellular trafficking events that require exquisite regulation to preserve neuronal function and viability. The axonal transport machinery, which, in addition to motors and microtubules, includes essential motor adaptor proteins, is controlled through intricate protein kinase signalling pathways^{8,9} and posttranslational microtubule modifications^{10,11} to ensure efficient transport in neurons.

Given the constant energy demands and distances over which cargoes must be mobilized, it is not surprising to find that mutations in the axonal transport machinery, even in genes that are widely expressed, can cause neurological diseases¹²⁻¹⁴, as can genetic disruption of closely related cellular processes such as endolysosomal

sorting¹⁵, autophagy⁵ and mitochondrial dynamics¹⁶. In addition, impairments in axonal trafficking have been reported in a multitude of neurological diseases, including Alzheimer disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson disease (PD)17, as well as inherited and acquired peripheral neuropathies, such as Charcot-Marie-Tooth disease (CMT)18. Furthermore, transport can decline with ageing^{19,20}, which is a major risk factor in many neurodegenerative conditions. However, not all cargoes seem to be equally affected²¹, and the relationship between defective axonal transport and neuronal pathology is often complex. For instance, we do not know why mutations in genes involved in axonal transport can cause such a breadth of neuronal disorders, why neurons with the longest axons are not always preferentially affected and why cargo-specific deficiencies can occur. Moreover, for those neurological diseases not linked to transport mutations, the question of whether transport defects impair neuronal homeostasis or are simply a consequence of degeneration remains largely unresolved.

To address these questions and illuminate the nuanced mechanisms that regulate axonal trafficking, the main aim of this Review is to examine the evidence for and against a causative role for axonal transport impairments in human nervous system dysfunction. We highlight putative and definite axonal transportrelated genes that have been linked to human neurological conditions. We then discuss the relevance of disturbed trafficking in neuronal disorders that are not directly connected to transport machinery, focusing on

¹Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK.

²UK Dementia Research Institute, University College London, London, UK.

³Discoveries Centre for Regenerative and Precision Medicine, University College London Campus, London, UK,

⁴These authors contributed equally: James N. Sleigh, Alexander M. Rossor.

*e-mail: giampietro.schiavo@ ucl.ac.uk https://doi.org/10.1038/ s41582-019-0257-2

Key points

- Mutations in various genes encoding components of the axonal transport machinery have been implicated in the pathogenesis of neurological diseases.
- Defective axonal trafficking has been linked to many nervous system disorders, but whether it is a cause or consequence of neuropathology remains largely unresolved.
- Intravital imaging of transport in axons of live mice provides some of the most compelling evidence that trafficking disturbances contribute to neuronal dysfunction.
- Targeting of specific mechanisms of axonal transport might be a valid therapeutic strategy to treat neurological disease.

key findings from patient samples and cells, followed by in vivo models of disease. Finally, we consider the merits of targeting axonal transport as a therapeutic strategy for neurodegeneration.

The axonal transport machinery

The microtubule cytoskeleton and motor proteins. Microtubules are crucial for long-range intracellular transport, and are highly dynamic structures consisting of heterodimers of α -tubulin and β -tubulin, isotypes of which are encoded by seven and eight human genes, respectively²². Axonal microtubules have a largely uniform morphology that dictates the directionality of motor protein transport: the growing plus end, which is targeted by the kinesin family of anterograde motors, points towards axon terminals, whereas the stable minus end faces the cell body and directs cytoplasmic dynein transport²³. Although the microtubules that are found within axons are more stable than those in dividing cells, a considerable fraction is labile²⁴.

The kinesin superfamily of motor proteins is encoded by 45 mammalian genes, 38 of which are expressed in the nervous system, and is classified into 15 subfamilies (kinesin 1 to kinesin 14b)^{1,25}. Kinesin 1, kinesin 2 and kinesin 3 seem to be most important for axonal transport^{12,14}. Kinesin 1 motors consist of a dimer of kinesin heavy chains, encoded by *KIF5A*, *KIF5B* and *KIF5C*, as well as a dimer of kinesin light chains, encoded by *KLC1*, *KLC2*, *KLC3* and *KLC4*.

In contrast to the expansive kinesin family, one form of cytoplasmic dynein is essential to retrograde axonal transport. Cytoplasmic dynein is a large (~1.4 MDa) multisubunit motor complex consisting of two dynein heavy chains (encoded by DYNC1H1), two intermediate chains (encoded by DYNC1IC1 and DYNC1IC2), two light intermediate chains (encoded by DYNC1LI1 and DYNC1LI2) and three light chain families (Roadblock encoded by DYNLRB1 and DYNLRB2, LC8 encoded by DYNLL1 and DYNLL2, and Tctex encoded by DYNLT1 and DYNLT3)3. The core motor is formed from a dynein heavy chain dimer on which the other dynein subunits assemble; the resulting complex binds to microtubules and hydrolyses ATP. Intriguingly, this motor complex by itself lacks major processivity and relies on accessory and adaptor proteins to efficiently transport cargo and carry out its myriad of functions.

Adaptor proteins. Adaptor proteins bind distinct cargoes and are fundamental to both kinesin and dynein function. Dynactin, a 1.1 MDa complex composed of 23 subunits built around a short, actin-like filament made of actin-related protein 1, is considered an essential cofactor for dynein²⁶. Dynactin binds dynein and aligns the motors to activate processive movement²⁷. Other activating adaptors include BICD2 and Hook proteins³. BICD2 is the best-characterized member of the mammalian BICD family of proteins (BICD1, BICD2, BICDR1 and BICDR2) and is a potent enhancer of minus-end-directed transport, substantially increasing processivity of the dynein–dynactin complex^{28–30}. The BICD family, like other activating adaptors, features coiled-coil domains, which are vital for the interaction of the proteins with the dynein–dynactin complex²⁶.

Two other key dynein regulators are LIS1 and NDEL1. LIS1 binds directly to the motor domain of dynein and, depending on its mode of interaction with the dynein complex, can lead to either increased or decreased microtubule binding³¹. Studies also suggest that this protein can both increase and decrease dynein velocity^{32,33}. NDEL1 is a coiled-coil-containing protein that interacts with dynein via its intermediate chain and LC8 subunits, and also interacts with LIS1³. NDEL1 has been shown to tether LIS1 to the dynein complex; however, it is not clear whether NDEL1 inhibits or enhances LIS1 function^{34,35}.

Kinesins seem to rely on comparatively few adaptor proteins, perhaps owing to the diversity of kinesin motors compared with the single dynein complex. Most of the kinesin adaptors, including HAP1, JIP1 and TRAK1, are also adaptors for dynein. The shared bidirectional adaptors frequently possess overlapping kinesin and dynein interaction regions, suggesting a binary switching mechanism to dictate the directionality of transport, at least in some scenarios³⁶.

Fast and slow axonal transport. For many decades, axonal transport has been subdivided into fast and slow categories on the basis of pulse-chase experiments using radiolabelled amino acids37. Fast axonal transport occurs at a rate of ~50-200 mm/day and delivers varied cargoes, including vesicles and membrane-bound organelles³⁸. Slow axonal transport is crucial for the mobilization of substances such as cytoskeletal proteins (for example, tubulin and actin) and covers distances of ~0.2-10.0 mm/day (REF.³⁸). Both fast and slow axonal transport are dependent on the same motor proteins, and the distinction in speed is simply a product of the time that cargoes remain stationary³⁹. For a 1-m-long motor neuron, fast axonal transport can convey cargoes between the cell body and the axon tip within a week, whereas slow axonal transport can take longer than a year. However, slow axonal transport is estimated to deliver more than three times as much protein as fast axonal transport, at least in some neuronal subtypes⁴⁰. Although imaging of slow axonal transport is possible, it is technically challenging owing to the timescale over which the process occurs^{38,41}; thus, much of what we know about the dynamic properties of cargo trafficking along axons was derived from liveimaging studies of fast axonal transport, beginning in the early 1980s^{42,43}. Consequently, in this Review, unless otherwise stated, discussions of axonal transport relate to fast axonal transport.

Processivity

The ability of motor–cargo complexes to undergo axonal transport without dissociation from microtubules.

Coiled-coil domains

A structural motif composed of two or more α -helices wrapped around each other to form a supercoil. The coiled-coil domain of the cytoplasmic dynein–dynactin complex connects the ATPase domain with the microtubule-binding domain.

Mutations in transport machinery genes

The transport of cargoes along axons requires three basic components: the microtubule network; a kinesin motor or the cytoplasmic dynein–dynactin retrograde complex; and various adaptor proteins. A single cytoplasmic dynein heavy chain is required for retrograde axonal transport, whereas more than 40 different kinesins fulfil various roles, including organelle transport, cytoskeletal remodelling and chromosomal dynamics⁴⁴. Missense mutations and small genomic rearrangements in genes encoding these key components of the transport machinery cause various neurological diseases (TABLE 1, FIG. 1). The fact that many of these genes are ubiquitously expressed, yet the disease-causing mutations result only in a neurological phenotype, has been interpreted as evidence that deficits in axonal transport are causative of neurological disease.

Mutations in approximately 20 motor protein-related genes have been reported to cause neuronal disorders, although it is important to state that for many of these genes, no clear role in axonal transport has been demonstrated either in vitro or in vivo. Examining the human phenotype and disease course associated with these mutations, coupled with in vitro and murine disease models, can help us to understand whether and how deficits in axonal transport cause neuropathology. At first glance, disease-causing mutations in putative axonal transport-related genes seem to result in a wide range of complex phenotypes, with mutations even in a single gene, such as DYNC1H1, having been linked to various conditions, including cognitive disability, motor dysfunction and epilepsy45. However, the reality is more simple, with most disease-causing mutations in the transport machinery giving rise to just a handful of neurodevelopmental disorders (for example, malformations of cortical development (MCDs), congenital fibrosis of extraocular muscles (CFEOM) or spinal muscular atrophy, lower extremity predominant (SMALED)) or neurodegenerative disorders (for example, hereditary spastic paraplegia (HSP), CMT, ALS or parkinsonism). With the exception of DCTN1, KIF1A, KIF1C and KIF5A, mutations in all other disease-associated axonal transport genes result in a neurodevelopmental, as opposed to a neurodegenerative, phenotype. In the sections that follow, we discuss the neurodevelopmental phenotypes associated with putative axonal transportrelated gene mutations and how these observations support or refute the hypothesis that deficits in axonal transport contribute to neurological disease.

Disorders of neuronal migration. MCDs include the conditions lissencephaly–pachygyria, polymicrogyria and microcephaly, all of which result in severe intellectual disability and are often associated with intractable epilepsy. Although MCDs have various aetiologies, including intrauterine infections and toxin exposure, a genetic cause is being recognized in an increasing number of cases⁴⁶. A clear bias is evident towards genes that encode proteins involved in microtubule-based transport, including kinesins (*KIF5C, KIF1A* and *KIF1C*), components of the retrograde transport machinery (*DYNC1H1, NDE1* and *LIS1*) and tubulins (*TUBA1A, TUBA8, TUBB, TUBB2A, TUBB2B* and *TUBB3*).

Neuronal migration and cerebral cortical development depend on several processes, including interkinetic nuclear migration (INM) and proliferation of radial glial progenitor cells (the precursors of cortical neurons and glia), radial neuronal migration and terminal translocation. Cytoplasmic dynein, LIS1, NDE1 and KIF1A have all been shown to contribute to INM, which is the oscillatory movement of radial progenitor cell nuclei at the ventricular plate between successive cycles of mitosis⁴⁷⁻⁴⁹. Loss-of-function mutations and genomic rearrangements in NDE1 and LIS1 disrupt this process, resulting in MCDs. Following the progression of neuronal progenitor cells from a multipolar to a bipolar orientation, the dynein-LIS1-NDEL1 complex has an essential role in the microtubule-based transport of the nucleus towards the cortical surface50. Perturbations of this process are likely to underlie the cortical lamination defects observed in the 'Legs at odd angles' (Loa) mice, which are homozygous for a missense mutation in Dync1h1 and show normal progenitor cell proliferation but delayed radial somal migration⁵¹.

Importantly, although INM and radial neuronal migration are microtubule-based processes, they occur either before or during the early stages of neuronal polarization, when the axon is specified from neurite precursors. Therefore, although mutations in axonal transport-related genes in MCDs reflect the importance of microtubule-based transport in cell division and nuclear migration during cortical development, they do not provide direct evidence that deficits in axonal transport cause MCDs.

Disorders of axonal pathfinding. CFEOM can occur in the presence of MCD and is characterized by a congenital disorder of eve movement, often accompanied by facial palsy. The fibrosis of the extraocular eye muscles is secondary to a failure of innervation by its corresponding cranial nerve, indicating that CFEOM is a disorder of disrupted axonal guidance. The condition can be caused by missense mutations in the tubulin genes TUBB2B and *TUBB3*, which encode the major β -tubulin subunits in the CNS and the PNS, or in the kinesin gene KIF21A (REFS⁵²⁻⁵⁴). The normal function of KIF21A is to reduce the microtubule polymerization rate to prevent microtubule 'catastrophe' (the sudden shrinkage of a microtubule network). CFEOM-causing mutations in KIF21A disrupt the autoinhibited state of the protein, leading to a reduction in microtubule polymerization and failure of axonal elongation in the oculomotor nerve. Mutant KIF21A displays enhanced microtubule binding in vitro, but has no effect on the microtubule run length or velocity in vitro, arguing against a role for disrupted axonal transport in CFEOM55.

Disorders of motor neuron development. Missense mutations in *DYNC1H1* and *BICD2*, which encode two major components of the retrograde transport complex, cause SMALED, a congenital disorder of motor neuron development predominantly affecting the lower limbs^{56,57}. In vitro microtubule gliding assays have shown increased and decreased processive movement, respectively, in the presence of disease-causing mutations in *BICD2*

Run length

The total displacement covered by a motor–cargo complex without pausing.

Microtubule gliding assays

An experimental technique that is used to assess the activity of motor proteins, in which microtubules and ATP are applied to motors bound to glass coverslips.

Anterograde transport machinery View Kinesin 1 NF3A AD Spastic paraplegis 10 (SPG10)/Charcot- Matie-Toch disease type 2 (CM12) 604187 Neurodesegmentative Macrodesegmentation Kinesin 1 NF5C AD Neonatal intractable myochous (NEIMV) 617235 Neurodeselopmentation Kinesin 1 NF5C AD Complex cortical dysplasis with other brain 615282 Neurodevelopmentation Kinesin 3 NF1A AD Manual retractation, autosomal dominant 9 614255 Neurodevelopmentation Kinesin 3 NF1C AR Spastic paraplegis 30 (SPG30) 610337 Neurodevelopmentation Kinesin 3 NF16A AR Printary microcomplaty type IIC(HSNL2) 61235 Neurodevelopmentation Kinesin 4 NF1A XL Metal syndrome 12 (MIS12) 616255 Neurodevelopmentation Kinesin 4 NF1A RL Metal syndrome 12 (MIS12) 610337 Neurodevelopmentation Kinesin 4 NF1A AD Compental fibrosis of extracular muscles 1/38 15200 Neurodevelopmentation Kinesin 4 NF274	Table 1 Axonal transport gene mutations and neurological disease									
Kinesin 1 KiF5A AD Specisic paraplegis 10 (SFG10)(Charcot) 604187 Neurodegenerative Martie-Toolinanes type 2 (CM72) 604187 Neurodegenerative Martie Control dispats fast active sin (ALS) 617231 Neurodegenerative Meurodegenerative Complex control dispats fast active sin (ALS) 617231 Neurodegenerative Meurodegenerative Meurodegenerative (MD0) Kinesin 1 KIF3C AD Complex control dispats fast and to here brain mellormations 2 (CDGM2) 61235 Neurodegenerative And Meurodegenerative (MD0) Kinesin 3 KIF1A AB Spatic arxis 2 (SFXX)/spastic paraplegia 30 (SFG30) 610357 Neurodegenerative (FFG58) Kinesin 3 KIF1A AR Meurodegenerative (FFG58) 610258 Neurodegenerative (FFG58) Kinesin 4 KF1A AR Meurodegenerative (FFG58) 01022 Neurodegenerative (FFG58) Kinesin 4 KF1A AR Meurodegenerative (FFG58) 00023 Neurodegenerative (FFG58) Kinesin 4 KF1A AR Meurodegenerative (FFG58) Neurodegenerative (FFG58) Neurodegenerative (FFG58) Neurodegenerative (FFG58) Neurodegenerative (FFG58) Neurodegenerative (FFG58) Neurodegenerative (FFG58) Neurode	Protein complex	Gene	Inheritance	Disease	OMIM entry	Phenotype				
Number of the set of	Anterograde transport me	achinery								
Kinesin 1KiDAmyotrophic lateral sclerosis (ALS)617921NeurodegenerativeKinesin 1KiPSCADComplex cortical dysplasa with other brain matiomations (CDCIMN) (CDCIMN)615787Neurodevelopmental MRD9)Kinesin 3KiP1AADMental retardation, autosonial dominant 9614255Neurodevelopmental MRD9)Kinesin 3KiP1CARSpastic paraplegia 30 (SPG30)610357Neurodevelopmental MRD9)Kinesin 3KiP1CARSpastic arazia 2 (SPA2)/spastic paraplegia 50616258Neurodevelopmental Mendevelopmental Kinesin 4Kinesin 4KiP1AARMeckel syndrom 12 (MKS12)616258Neurodevelopmental Mendevelopmental Syndrom 12 (MKS12)616258Neurodevelopmental Mendevelopmental syndrom 12 (MKS12)Neurodevelopmental mendevelopmental syndrom 12 (MKS12)Neurodevelopmental mendevelopmental syndrom 12 (MS12)Neurodevelopmental mendevelopmental mendevelopmental (CFCM)(S) (S) (S) (S) (S) (S) (S) (S) (S) (S)	· ·	KIF5A	AD		604187	Neurodegenerative				
Kinesin 1 KIFSC AD Complex contract dypalata with other brain malformations? (CDCEM9) 615282 Neurodevelopmental neurodevelopmental (NRD9) Kinesin 3 KIF2A AD Mentat rear-dation, autosonal dominant 9 614255 Neurodegenerative (NRD9) Kinesin 3 KIF1C AR Spastic paraplegia 30 (SFG30) 610357 Neurodegenerative (SFG58) Kinesin 3 KIF1A AR Spastic paraplegia 30 (SFG30) 612124 Neurodevelopmental (SFG58) Kinesin 3 KIF1A AR Metcket syndrome 12 (MK512) 61256 Neurodevelopmental (SFG58) Kinesin 4 KIF4A AR Metcket syndrome 12 (MK512) 61205 Neurodevelopmental (SFG58) Kinesin 4 KIF4A XL Mental retaradation (MK100) single case) 30093 Neurodevelopmental (SFG58) Kinesin 4 KIF4A XL Mental retaradation (MK100) single case) 30093 Neurodevelopmental (SFG58) Kinesin 4 KIF4A AD Canogenital (Br053) S7100 Neurodevelopmental (SFG58) Kinesin 5 KIF10 AD Canogenital (Br053) S5100 Neurodevelopmental (SFG68) Kinesin 7 KIF10 AR Primary microcephaly 14 (MCPH13) S1601 Neurodevelopmental (SFG69) Kinesin 5 KIF10			AD	Neonatal intractable myoclonus (NEIMY)	617235	Neurodevelopmental				
Kinesin 3 KiF A AD Merical transformations 2 (CDCE0R4) 614255 Neurodevelopmental (MRD9) Kinesin 3 KiF CA AR Hereditary sensory neuropathy type IIC (HSN2C) 612037 Neurodegenerative (ARD) Kinesin 3 KiF CA AR Spastic ratixia 2 (SPNX2)/spastic paraplegia 36 (S1302) Neurodegenerative (SPCS9) Kinesin 3 KiF CA AR Mercedels syndrome 12 (MKS12) 616255 Neurodevelopmental (SRCS9) Kinesin 4 KiF A AR Mercedetardation (MR100) single case) 300923 Neurodevelopmental (SRCS9) Kinesin 4 KiF A AR Mercedetardation (MR100) single case) 300923 Neurodevelopmental (SRCS9) Kinesin 4 KiF A AR Mercecapital and Sindrome (ACLS9) dubert 300923 Neurodevelopmental (SRCS9) Kinesin 4 KiF A AR Mercecapital (SRCS9) 300923 Neurodevelopmental (SRCS9) Kinesin 4 KiF CA AR Mercecapital (SRCS9) 30923 Neurodevelopmental (SRCS9) Kinesin 5 KiF IA AR AR Cargenital (SRCS10) 315700 Neu			AD	Amyotrophic lateral sclerosis (ALS)	617921	Neurodegenerative				
Number Number Number Number Number AR Areaditary surgary numper hype life (MSN2) 614213 Numodegenerative Kinesin 3 K/F/C AR Spantic taxina (XN2)/spantic paraplegia 58 61332 Numodegenerative Kinesin 3 K/F/A AR Spantic taxina (XN2)/spantic paraplegia 58 61258 Numodewelopmental Kinesin 3 K/F/A AR Microcephaly 201(MCH20) 61741 Numodewelopmental Kinesin 4 K/F/A AR Microcephaly and bindress (single case) Numodewelopmental Kinesin 4 K/F/A AR Congenital fibrosis of extraocular muscles 1/38 135700 Numodewelopmental Kinesin 5 K/F/A AR Intercoephaly with rowithout fraining (single case) Numodewelopmental 15700 Neurodevelopmental Kinesin 5 K/F/A AR Intercoephaly with rowithout fraining (single case) NA Neurodevelopmental Kinesin 5 K/F/A AR Intercoephaly with rowithout fraining (single case) NA Neurodevelopmental Kinesin 5 K/F/A AR	Kinesin 1	KIF5C	AD		615282	Neurodevelopmental				
AR Spastic paraple ja 30 (SPG30) 610357 Neurodegenerative Kinesin 3 KIF1C AR Spastic ataxia 2 (SPAX2)/spastic paraple ja 58 611302 Neurodegenerative Kinesin 3 KIF1A AR Meckel syndrome 12 (MKS12) 616258 Neurodevelopmental Kinesin 3 KIF1A AR Meckel syndrome 12 (MKS12) 616258 Neurodevelopmental Kinesin 4 KIF1A AR Microcephaly 20 (MCFH20) 01923 Neurodevelopmental Kinesin 4 KIF1A AL Mercal retardation (MRX10) single case) 300923 Neurodevelopmental Kinesin 4 KIF2A AD Corrganital fibrosis of extraocular muscles 1/3B 135700 Neurodevelopmental Kinesin 5 KIF11 AD Corrganital fibrosis of extraocular muscles 1/3B 135700 Neurodevelopmental Kinesin 7 KIF10 AR Primary microcephaly 13 (MCFH13) 61051 Neurodevelopmental Kinesin 13 KIF0* AR Microcephaly and thrombocytopenia NA Neurodevelopmental Kinesin 13 KIF10* AD	Kinesin 3	KIF1A	AD		614255	Neurodevelopmental				
Kinesin 3 KiF1C AR Spastic atxii 2 (SPAX2)/spastic paraplegia 58 611302 Neurodegenerative (SPCS8) Kinesin 3 KiF14 AR Mcccksyndrome 12 (MKS12) 616258 Neurodevelopmental Kinesin 4 Kinesin 3 KiF16A AR Mcccksyndrome 12 (MKS12) 617914 Neurodevelopmental Kinesin 4 Kinesin 4 KiF4A AR Mcrocophaly 20 (MCPH20) 617914 Neurodevelopmental Syndrome 12 (BTS12) Kinesin 4 KiF2 AR Acrocollosal syndrome (ACLS)/Joubert 200900 Neurodevelopmental creatation (MRX100: single case) 300073 Neurodevelopmental CFFC0M178B Kinesin 4 KiF21A AD Congential fibrosis of extraocular muscles 1/3B 135700 Neurodevelopmental creatation (MCLM3) 616051 Neurodevelopmental creatation (MCLM3) Neurodevelopmental creatation (MCLM3) 616051 Neurodevelopmental creatation (MCLM3) 616051 Neurodevelopmental creatation (MCLM3) Neurodevelopmental creatation (MCLM3			AR	Hereditary sensory neuropathy type IIC (HSN2C)	614213	Neurodegenerative				
Kinesin 3KilF14AR AR Piramy microcephaly 20 (MCPH20)616794Neurodevelopmental Neurodevelopmental Kinesin 4Kinesin 3KIF16AARMicrocephaly 20 (MCPH20)617914Neurodevelopmental Neurodevelopmental Kinesin 4Kinesin 4KIF2AALMental retardution (MRS100: single case)300923Neurodevelopmental syndrome 12 (BTS12)Kinesin 4KIF2AARAcrocelload syndrom (ACLS)/Joubert200990Neurodevelopmental syndrome 12 (BTS12)Kinesin 4KIF2AADCongenital flivosis of extraocular muscles 1/3B135700Neurodevelopmental chrorethopathy, (mphoedema or mental retardation (MCLMR)Kinesin 5KIF10ARPrimary microcephaly 13 (MCPH13)15091Neurodevelopmental chrorethopathy, (single case)NAKinesin 7KIF16ARPrimary microcephaly and thrombocytopenia (single case)NANeurodevelopmental (single case)Kinesin 13KIF17ARGoldberg-Shprintzen syndrome (GOSH5)609400Neurodevelopmental spintal matormations 3 (CDCBM3)Kinesin 13KIF18FARGoldberg-Shprintzen syndrome (GOSH5)609400Neurodevelopmental spintal matormations 3 (CDCBM3)Kinesin 1DYNC1H1ADMental retardation 13 (MRD13)614563Neurodevelopmental spintal muscular artophy, lower extremity predominant 1 (MMR7B)Dynein cytoplasmic 1DYNC1H1ADLissencephaly 4 (L14) with microcephaly615411Neurodevelopmental spintal muscular artophy, lower extremity predominant 1 (MMR7B)614563			AR	Spastic paraplegia 30 (SPG30)	610357	Neurodegenerative				
ARPrimary microcephaly 20 (MCPH20)617914NeurodevelopmentalKinesin 3KIF16AARMicrocephaly and blindness (single case)NANeurodevelopmentalKinesin 4KIFAXLMental retardation (MRX100; single case)300923NeurodevelopmentalKinesin 4KIFAARAccollosal syndrome (ACLS)/Joubert200990NeurodevelopmentalKinesin 4KIF2AADCongenital fibrosis of extraocular muscles 1/38135700NeurodevelopmentalKinesin 5KIF10ARMicrocephaly with or without cretoretinopathy, hymphedema or mental retardation (MCLMR)152950NeurodevelopmentalKinesin 7KIF10ARPrimary microcephaly 13 (MCPH13)616051NeurodevelopmentalKinesin 9KIF0ARMicrocephaly and thrombocytopenia (single case)NANeurodevelopmental (single case)Kinesin 13KIF2A*ADCortical dysplasia, complex, with other brain malformations 3 (CDCBM3)615411Neurodevelopmental malformations 3 (CDCBM3)Kinesin 13KIF1PARMental retardation 13 (MRD13)614563Neurodevelopmental malformations 3 (CDCBM3)Dynein cytoplasmic 1 brain predominant 1 (SMRNB)DYNC1H1ADMental retardation 13 (MRD13)614563Neurodevelopmental 	Kinesin 3	KIF1C	AR		611302	Neurodegenerative				
Kinesin 3KIF 16AARMicrocephaly and blindness (single case)NANeurodevelopmentalKinesin 4KIF4AXLMental retardation (MRX100; single case)300923NeurodevelopmentalKinesin 4KIF7ARAcrocallosal syndrome (ACLS)/Joubert200990NeurodevelopmentalKinesin 4KIF21AADCongenital fibrosis of extraocular muscles 1/3B135700NeurodevelopmentalKinesin 5KIF11ADMicrocephaly with or without chorioretinopathy, lymphoedema or mental retradiation (MCLNR)152950NeurodevelopmentalKinesin 7KIF10ARPrimary microcephaly 13 (MCPH13)616051NeurodevelopmentalKinesin 9KIF6*ARIntellectual disability (single case)NANeurodevelopmentalKinesin 12KIF15ARCortical dysplasia, complex, with or ther brain maformations 3 (CDCBM3)615411NeurodevelopmentalKinesin 13KIF2A*ADCortical dysplasia, complex, with or ther brain maformations 3 (CDCBM3)614533NeurodevelopmentalRetraget transport macriterUCortical dysplasia, complex, with or ther brain maformations 3 (CDCBM3)614563NeurodevelopmentalDynein cytoplasmic 1 portein cytoplasmic 1DYNC1H1ADMetraf retardation 13 (MKD13)614563NeurodevelopmentalDynein cytoplasmic 1 portein 12DYNC1H1ADEstencephaly 12USA1 breedetary motor neuropathy type VIIB607641NeurodevelopmentalNucl neurodevelopmental predominant 15/MALED1DLisenceph	Kinesin 3	KIF14	AR	Meckel syndrome 12 (MKS12)	616258	Neurodevelopmental				
Kinesin 4KiF4AXLMental retardation (MRX100; single case)300923NeurodevelopmentalKinesin 4KIF2*ARAcrocallosal syndrome (ACLS)/Joubert200900NeurodevelopmentalKinesin 4KIF21AADCongenital fibrosis of extraocular muscles 1/3B135700NeurodevelopmentalKinesin 5KIF10*ADCongenital fibrosis of extraocular muscles 1/3B135700NeurodevelopmentalKinesin 7KIF10*ARPrimary microcephaly 13 (MCPH13)616051NeurodevelopmentalKinesin 7KIF6*ARIntellectual disability (single case)NANeurodevelopmentalKinesin 12KIF15ARMicrocephaly and thrombocytopeniaNANeurodevelopmentalKinesin 13KIF2A*ADCortical dysplasia, complex, with other brain malformations 3 (CDCBM3)609460NeurodevelopmentalKinesin-binding proteinKIF19P / KBPARCortical dysplasia, complex, with other brain malformations 3 (CDCBM3)614563NeurodevelopmentalKinesin-binding proteinKIF19P / KBPARCortical dysplasia, complex, with other brain malformations 3 (CDCBM3)614563NeurodevelopmentalKinesin-binding proteinKIF19P / KBPARCortical dysplasia, complex, with ALMANeurodevelopmentalKinesin-12Mirohy/ALMAADCortical dysplasia, complex, with ALMANeurodevelopmentalKinesin 13KIF2A*ADDistal hereditary motor neuropathy type VIIB607641NeurodevelopmentalSpinal muscular atrophy, lower extre			AR	Primary microcephaly 20 (MCPH20)	617914	Neurodevelopmental				
Kinesin 4KIF7*ARAcrocallosal syndrome (ACLS)/Joubert syndrome 12 (BTS12)200990Neurodevelopmental syndrome 12 (BTS12)Kinesin 4KIF21AADCongenital Hirosis of extraocular muscles 1/3B135700Neurodevelopmental (CFEOM1/3B)Kinesin 5KIF11ADMicrocephaly with or without retardation (MCLMR)152950Neurodevelopmental neurodevelopmental (Sresin 7)Kinesin 7KIF10*ARPrimary microcephaly 31 (MCPH13)616051Neurodevelopmental (Single case)Kinesin 9KIF6*ARIntellectual disbility (single case)NANeurodevelopmental (Single case)Kinesin 12KIF15ARMicrocephaly and thrombocytopenia (Single case)NANeurodevelopmental (Single case)Kinesin 13KIF2A*ADCortical dysplasia, complex, with other brain malformations 3 (CDCBM3)614563Neurodevelopmental (Single case)Kinesin 1NF1BP / KBPARGoldberg-Shprintzen syndrome (GOSH5)609460Neurodevelopmental (Single case)Dynein cytoplasmic 1 heavy chain 1DYNC1H1ADMental retardation 13 (MRD13)614563Neurodevelopmental Spinal muscular atrophy, lower extremity predominant 1 (SMALED1)158600Neurodevelopmental (HMM7B)Dynactin 1/P150*Mat protoin 1DCTN1ADLissencephaly, subcortical laminar heterotropia (MALED1)607641Neurodevelopmental (Lissencephaly, Subcortical laminar heterotropia)607641Neurodevelopmental (Lissencephaly, Subcortical laminar heterotropia)Neurodevelopmental (Lissen	Kinesin 3	KIF16A	AR	Microcephaly and blindness (single case)	NA	Neurodevelopmental				
Kinesin 4KiF 21AADCongenital (fbrsis) of extraorcular muscles 1/3B135700Neurodevelopmental (cFECM1/18B)Kinesin 5KiF 11ADMicrocephaly with or without chorioretinopathy, imploedema or mental chorioretinopathy, imploedema or mental (kinesin 7S2950Neurodevelopmental chorioretinopathy, imploedema or mental chorioretinopathy, imploedema or mental chorioretinopathy, imploedema or mental kinesin 7KiF 10°ARPrimary microcephaly 13 (MCPH13)616051Neurodevelopmental (kinesin 12Kinesin 7KiF 6°ARIntellectual disability (single case)NANeurodevelopmental (single case)NANeurodevelopmental (single case)Kinesin 13KiF 2A*ADCortical dysplasia, complex, with other brain maformations 3 (CDCBM3)615411Neurodevelopmental (single case)Kinesin 13KiF 18P / K8PARGoldberg-Shprintzen syndrome (GOSH5)609460Neurodevelopmental Retrograde transport mac/transport mac/tra	Kinesin 4	KIF4A	XL	Mental retardation (MRX100; single case)	300923	Neurodevelopmental				
(CFEOM1/3B)Kinesin 5KiF11ADMicrocephaly with or without horioretinopathy, imphoedema or mental retardation (MCLMK)152950Neurodevelopmental Neurodevelopmental Kinesin 7KiF10ARPrimary microcephaly 13 (MCPH13)61601Neurodevelopmental Neurodevelopmental Kinesin 12Kinesin 12KiF6°ARIntellectual disability (single case)NANeurodevelopmental Kinesin 12Kinesin 13KiF2A°ADCortical dysplasa, complex, with other brain mafformations 3 (CDCBMS)609460Neurodevelopmental Neurodevelopmental RetractorKinesin 13KiF1BP / KBPARColdberg-Shprintzen syndrome (GOSHS)609460Neurodevelopmental Neurodevelopmental Spinal muscular atrophy, lower extremity predominant 1 (SMALED1)614563Neurodevelopmental Neurodevelopmental Spinal muscular atrophy, lower extremity predominant 1 (SMALED1)Neurodevelopmental field Neurodevelopmental predominant 1 (SMALED1)Neurodevelopmental field Neurodevelopmental field Neurodevelopmental field NEURODynactin 1/P150B/CD2ADSpinal muscular atrophy, lower extremity predominant 1 (SMALED1)Neurodevelopmental field Neurodevelopmental field NEURONuctin 1/P150B/CD2ADSpinal muscular atrophy, lower extremity predominant 1 (SMALED1)Neurodevelopmental field NEURONuctin 1/P150B/CD2ADSpinal muscular atrophy, lower extremity predominant 1 (SMALED1)Neurodevelopmental field NEURONuctin 1/P150B/CD2ADSpinal muscular atrophy, lower extremity predominant 1 (SMALED1)<	Kinesin 4	KIF7ª	AR		200990	Neurodevelopmental				
kinesin 7KIF10°ARPrimary microcephaly 13 (MCPH13)616051NeurodevelopmentalKinesin 7KIF6°ARIntellectual disability (single case)NANeurodevelopmentalKinesin 9KIF15ARMicrocephaly and thrombocytopenia (single case)NANeurodevelopmentalKinesin 12KIF2A°APCortical dysplasia, complex, with other brain malformations 3 (CDCBM3)615411NeurodevelopmentalKinesin 13KIF2A°APColdberg-Shprintzen syndrome (GOSH5)609460NeurodevelopmentalKinesin-binding proteinKIF1BP / KBPARColdberg-Shprintzen syndrome (GOSH5)609460NeurodevelopmentalRetrograde transportKIF1BP / KBPARColdberg-Shprintzen syndrome (GOSH5)609460NeurodevelopmentalPrimary chain 1DYNC1H1ADSpinal muscular atrophy, lower extremity predominant 1 (SMALED1)614563NeurodevelopmentalDynactin 1/P150DCTN1ADSpinal muscular atrophy, lower extremity predominant 2 (SMALED2)607641NeurodegenerativeBicaudal D2BICD2ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)60731NeurodevelopmentalNucl neurodevelopmental predominant, 2A (SMALED2A)Microhydranencephaly (MHAC)60513NeurodevelopmentalNucl neurodevelopmental predominant, 2A (SMALED2A)611603NeurodevelopmentalNucl neurodevelopmental predominant, 2A (SMALED2A)611603NeurodevelopmentalNucl neurodevelopmental predominant, 2A (SMALED2A)	Kinesin 4	KIF21A	AD		135700	Neurodevelopmental				
Kinesin 9K/F6°ARIntellectual disability (single case)NANeurodevelopmentalKinesin 12K/F15ARMicrocephaly and thrombocytopenia (single case)NANeurodevelopmentalKinesin 13K/F2A°ADCortical dysplasia, complex, with other brain malformations 3 (CDCBM3)615411NeurodevelopmentalKinesin-binding proteinK/F1BP / KBPARGoldberg-Shprintzen syndrome (GOSH5)609460NeurodevelopmentalRetrograde transport machineryDync1H1ADMental retardation 13 (MRD13)614563NeurodevelopmentalDynein cytoplasmic 1 heavy chain 1DYNC1H1ADMental retardation 13 (MRD13)617663NeurodevelopmentalDynactin 1/P150 ^{Cland} DC7N1ADDistal hereditary motor neuropathy type VIIB607641NeurodegenerativeBicaudal D2B/CD2ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)615200Neurodevelopmental predominant, 2A (SMALED2A)NuE neurodevelopmental predominant, 2A (SMALED2A)Neurodevelopmental lissencephaly 1LIS1 / PAFAH1B1ADLissencephaly (LIS4) with microcephaly dotsen Lissencephaly 4 (LIS4) with microcephaly607432Neurodevelopmental Lissencephaly 4 (LIS4) with microcephaly dotsenNeurodevelopmental lissencephaly 4 (LIS4) with microcephaly611603Neurodevelopmental Lissencephaly 4 (LIS4) with microcephaly611603Neurodevelopmental lissencephaly 4 (LIS4) with microcephaly611603Neurodevelopmental lissencephaly 4 (LIS4) with microcephaly611603Neurodevelopmental lis	Kinesin 5	KIF11	AD	chorioretinopathy, lymphoedema or mental	152950	Neurodevelopmental				
Kinesin 12KIF15ARMicrocephaly and thrombocytopenia (single case)NANeurodevelopmental (single case)Kinesin 13KIF2A*ADCortical dysplasia, complex, with other brain malformations 3 (CDCBM3)615411Neurodevelopmental neurodevelopmentalKinesin-binding proteinKIF1BP / KBPARGoldberg-Shprintzen syndrome (GOSHS)609460Neurodevelopmental neurodevelopmentalRetrograde transport machineryDynein cytoplasmic 1 heavy chain 1DYNC1H1ADMental retardation 13 (MRD13)614563Neurodevelopmental spinal muscular atrophy, lower extremity predominant 1 (SMALED1)158600Neurodevelopmental neurodevelopmental spinal muscular atrophy, lower extremity predominant 1 (SMALED1)Neurodevelopmental spinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)Neurodevelopmental Neurodevelopmental (HMN7B)Dynactin 1/P150DCTN1ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)607641Neurodevelopmental Neurodevelopmental (HMN7B)Dynactin 1/P150BICD2ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)615290Neurodevelopmental Neurodevelopmental Lissencephaly 4 (LIS4) with microcephaly tilsencephaly 4 (LIS4) with microcephaly tilsencephaly 4 (LIS4)Neurodevelopmental malformations 8 (CDCBM8)NudE neurodevelopment protein 1TUBA1ADLissencephaly 3 (LIS3)611603Neurodevelopmental Lissencephaly 3 (LIS4)NudE neurodevelopment protein 1TUBA8ARComplex cortical dysplasia with other brain malformatio	Kinesin 7	KIF10 ^a	AR	Primary microcephaly 13 (MCPH13)	616051	Neurodevelopmental				
(single case)Kinesin 13KIF2A*ADCortical dysplasia, complex, with other brain malformations 3 (CDCBM3)615411NeurodevelopmentalKinesin-binding proteinKIF1BP / KBPARGoldberg-Shprintzen syndrome (GOSHS)609460NeurodevelopmentalRetrograde transport motorMatter terrolMatter terrolSinal muscular atrophy, lower extremity predominant 1 (SMALED1)614563NeurodevelopmentalDynactin 1/P150 ^{Clued} D/TN1ADMental retardation 13 (MRD13)614563NeurodevelopmentalDynactin 1/P150 ^{Clued} D/TN1ADDistal hereditary motor neuropathy type VIIB Perty syndrome607611Neurodegenerative NeurodegenerativeBicaudal D2B/CD2ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)615290Neurodevelopmental Neurodevelopmental issencephaly 1NDE1ADLissencephaly, subcortical laminar heterotropia607432Neurodevelopmental lissencephaly 4 (LIS4) with microcephalyNeurodevelopmental lissencephaly 4 (LIS4) with microcephaly611603Neurodevelopmental lissencephaly 4 (LIS4) with microcephalyMicrobulin class 1TUBA1AADLissencephaly 3 (LIS3)611603Neurodevelopmental lissencephaly 3 (LIS3)611603Neurodevelopmental lissencephaly 3 (LIS4)Brubulin class 1TUBA2AADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)61031Neurodevelopmental lissencephaly 3 (LIS3)Brubulin class 1TUBB2AADComplex cortical dysplasia with other brain malf	Kinesin 9	KIF6ª	AR	Intellectual disability (single case)	NA	Neurodevelopmental				
Kinesin-binding proteinKIF 1BP / KBPARGoldberg-Shprintzen syndrome (GOSHS)609460NeurodevelopmentalRetrograde transport machineryEmprine cytoplasmic 1 heavy chain 1DYNC1H1ADMental retardation 13 (MRD13)614563NeurodevelopmentalDynactin 1/P150CheedDCTN1ADMental retardation 13 (MRD13)607641NeurodevelopmentalDynactin 1/P150CheedDCTN1ADDistal hereditary motor neuropathy type VIIB607641NeurodegenerativeBicaudal D2B/CD2ADSpinal muscular atrophy, lower extremity predominant 1 (SMALED2A)615290NeurodegenerativeBicaudal D2NDE1ADLissencephaly, subcortical laminar heterotropia (Microhydranencephaly (MHAC)605013Neurodevelopmental issencephaly 4 (LIS4) with microcephalyNudE neurodevelopmental protein 1TUBA1AADLissencephaly 3 (LIS3)611603Neurodevelopmental issencephaly 4 (LIS4) with microcephalyMicrohydranencephaly 3 (LIS4)ADComplex cortical dysplasia with other brain malformations 8 (CDCBM6)611603Neurodevelopmental issencephaly 6 (12019)Microhydranences (CDCBM6)TUBB2AADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)615761Neurodevelopmental issencephaly 6 (12019)Bicaudal D2TUBB2BADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)611603Neurodevelopmental issencephaly 6 (12019)Microhydranencephaly 6 (14019)TUBA3ADComplex cortical dysplasia with other brain malformations 6 (CDCBM	Kinesin 12	KIF15	AR		NA	Neurodevelopmental				
Retrograde transport machineryDynein cytoplasmic 1 heavy chain 1DYNC1H1 MADMental retardation 13 (MRD13)614563Neurodevelopmental Spinal muscular atrophy, lower extremity predominant 1 (SMALED1)Sepinal muscular atrophy, lower extremity predominant 1 (SMALED1)Neurodevelopmental Neurodevelopmental predominant 1 (SMALED1)Dynactin 1/P150DCTN1 MADDistal hereditary motor neuropathy type VIIB Perry syndrome607641Neurodegenerative NeurodegenerativeBicaudal D2BICD2ADSpinal muscular atrophy, lower extremity predominant, ZA (SMALED2A)615290Neurodevelopmental predominant, ZA (SMALED2A)Lissencephaly 1LIS1 / PAFAH1B1 LIS1 / PAFAH1B1ADLissencephaly, subcortical laminar heterotropia tissencephaly 4 (LIS4) with microcephaly 614019Neurodevelopmental Neurodevelopmental Lissencephaly 4 (LIS4) with microcephaly 614019Neurodevelopmental Neurodevelopmental aas-TubulinMicrotubule networkTUBA1AADLissencephaly 3 (LIS3)611603Neurodevelopmental neurodevelopmental malformations 8 (CDCBM6)B-Tubulin class 1TUBBADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)61571Neurodevelopmental malformations 6 (CDCBM6)β2A-Tubulin class IIbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM6)615763Neurodevelopmental malformations 6 (CDCBM6)	Kinesin 13	KIF2Aª	AD		615411	Neurodevelopmental				
Dynein cytoplasmic 1 heavy chain 1DYNC1H1 NC1H1ADMental retardation 13 (MRD13)614563Neurodevelopmental Spinal muscular atrophy, lower extremity predominant 1 (SMALED1)614563Neurodevelopmental NeurodevelopmentalDynactin 1/P150 Dynactin 1/P150 PerroDCTN1 Perry syndromeADDistal hereditary motor neuropathy type VIIB Perry syndrome607641NeurodegenerativeBicaudal D2BICD2ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)607432Neurodevelopmental Perro syndromeLissencephaly 1LIS1 / PAFAH1B1 LIS1 / PAFAH1B1ADLissencephaly, subcortical laminar heterotropia Lissencephaly 4 (LIS4) with microcephaly tissencephaly 4 (LIS4) with microcephaly tissencephaly 4 (LIS4) with microcephalyNeurodevelopmental Neurodevelopmental Lissencephaly 3 (LIS3)611603Neurodevelopmental Neurodevelopmental Lissencephaly 3 (LIS3)Microtubule networkTUBA3ARComplex cortical dysplasia with other brain malformations 6 (CDCBM8)615771Neurodevelopmental Meurodevelopmental malformations 5 (CDCBM5)β2A-Tubulin class IIbTUBB2AADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)615763Neurodevelopmentalβ2A-Tubulin class IIbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)61031Neurodevelopmental Meurodevelopmental malformations 5 (CDCBM5)	Kinesin-binding protein	KIF1BP / KBP	AR	Goldberg–Shprintzen syndrome (GOSHS)	609460	Neurodevelopmental				
heavy chain 1Spinal muscular atrophy, lower extremity predominant 1 (SMALED1)158600NeurodevelopmentalDynactin 1/P150DCTN1ADDistal hereditary motor neuropathy type VIIB (HMN7B)607641NeurodegenerativeBicaudal D2BICD2ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)615290NeurodevelopmentalLissencephaly 1LIS1 / PAFAH1B1ADLissencephaly, subcortical laminar heterotropia607432NeurodevelopmentalNudE neurodevelopment protein 1NDE1ARMicrohydranencephaly (MHAC)605013NeurodevelopmentalAtrotubule networkLissencephaly 4 (LIS4) with microcephaly614019NeurodevelopmentalAtrotubulinTUBA1AADLissencephaly 3 (LIS3)611603NeurodevelopmentalB-TubulinTUBA3ARComplex cortical dysplasia with other brain malformations 6 (CDCBM8)615771Neurodevelopmentalβ2A-Tubulin class IIbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)610031Neurodevelopmental	Retrograde transport mad	chinery								
Prima and a spinal muscular atrophy, lower extremity predominant 1 (SMALED1)15600Neurodevelopmental predominant 1 (SMALED1)Dynactin 1/P150GuedDCTN1ADDistal hereditary motor neuropathy type VIIB607641Neurodegenerative NeurodegenerativeBicaudal D2BICD2ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)615290Neurodevelopmental predominant, 2A (SMALED2A)Lissencephaly 1LIS1 / PAFAH1B1ADLissencephaly, subcortical laminar heterotropia (HMN7B)607432Neurodevelopmental predovelopmental (Ensencephaly 4 (LIS4) with microcephaly605013Neurodevelopmental (Ensencephaly 4 (LIS4) with microcephalyNudE neurodevelopment protein 1TUBA1AADLissencephaly 3 (LIS3)611603Neurodevelopmental anaformations 8 (CDCBM6)Microtubule networkTUBBAARComplex cortical dysplasia with other brain malformations 8 (CDCBM6)615771Neurodevelopmental malformations 5 (CDCBM6)β2A-Tubulin class 1IbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)610031Neurodevelopmental		DYNC1H1	AD	Mental retardation 13 (MRD13)	614563	Neurodevelopmental				
HMN7BHM7BHM7BHM7BPerry syndrome168005NeurodegenerativeBicaudal D2BICD2ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)615290Neurodevelopmental predominant, 2A (SMALED2A)Lissencephaly 1LIS1 / PAFAH1B1ADLissencephaly, subcortical laminar heterotropia607432Neurodevelopmental Lissencephaly (MHAC)NudE neurodevelopment protein 1NDE1ARMicrohydranencephaly (MHAC)605013 (B4019)Neurodevelopmental Lissencephaly 4 (LIS4) with microcephalyNeurodevelopmental (B4019)Microtubule networkComplex cortical dysplasia with other brain malformations 8 (CDCBM8)611603Neurodevelopmental (B1180)B-Tubulin class 1TUBAADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)615771Neurodevelopmental (B15763)β2A-Tubulin class IIbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)610031Neurodevelopmental (B15763)					158600	Neurodevelopmental				
Bicaudal D2BICD2ADSpinal muscular atrophy, lower extremity predominant, 2A (SMALED2A)615290NeurodevelopmentalLissencephaly 1LIS1 / PAFAH1B1ADLissencephaly, subcortical laminar heterotropia607432NeurodevelopmentalNudE neurodevelopment protein 1NDE1ARMicrohydranencephaly (MHAC)605013NeurodevelopmentalLissencephaly 4 (LIS4) with microcephaly614019614019614019614019Microtubule networkTUBA1AADLissencephaly 3 (LIS3)611603Neurodevelopmentala^3-TubulinTUBA8ARComplex cortical dysplasia with other brain malformations 8 (CDCBM8)613180NeurodevelopmentalB-Tubulin class 1TUBB2AADComplex cortical dysplasia with other brain malformations 5 (CDCBM6)615771Neurodevelopmentalβ2A-Tubulin class IlbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)615763Neurodevelopmental	Dynactin 1/P150 ^{Glued}	DCTN1	AD	· · · · · · · · · · · · · · · · · · ·	607641	Neurodegenerative				
Lissencephaly 1LIS1 / PAFAH1B1ADLissencephaly, subcortical laminar heterotropia607432NeurodevelopmentalNudE neurodevelopment protein 1NDE1ARMicrohydranencephaly (MHAC)605013NeurodevelopmentalLissencephaly 4 (LIS4) with microcephaly614019614019614019614019Microtubule networkTUBA1AADLissencephaly 3 (LIS3)611603NeurodevelopmentalatA-TubulinTUBA8ARComplex cortical dysplasia with other brain malformations 8 (CDCBM8)613180NeurodevelopmentalB-Tubulin class 1TUBB2AADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)615771Neurodevelopmentalβ2A-Tubulin class IlbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)615763Neurodevelopmental				Perry syndrome	168605	Neurodegenerative				
NudE neurodevelopment protein 1NDE1ARMicrohydranencephaly (MHAC)605013 Lissencephaly 4 (LIS4) with microcephalyNeurodevelopmentalMicrotubule network614019614019Microhydranencephaly 4 (LIS4) with microcephaly614019Microhydranencephaly 4 (LIS4)Microtubule network4DLissencephaly 3 (LIS3)611603Neurodevelopmentala1A-TubulinTUBA1AADLissencephaly 3 (LIS3)611603Neurodevelopmentala8-TubulinTUBA8ARComplex cortical dysplasia with other brain malformations 8 (CDCBM8)613180NeurodevelopmentalB-Tubulin class 1TUBBADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)615771Neurodevelopmentalβ2A-Tubulin class IIbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)610031Neurodevelopmental	Bicaudal D2	BICD2	AD		615290	Neurodevelopmental				
protein 1Lissencephaly 4 (LIS4) with microcephaly614019Microtubule networka1A-TubulinTUBA1AADLissencephaly 3 (LIS3)611603Neurodevelopmentala8-TubulinTUBA8ARComplex cortical dysplasia with other brain malformations 8 (CDCBM8)613180NeurodevelopmentalB-Tubulin class 1TUBBADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)615771Neurodevelopmentalβ2A-Tubulin class IlbTUBB2AADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)615763Neurodevelopmentalβ2A-Tubulin class IlbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)610031Neurodevelopmental	Lissencephaly 1	LIS1/PAFAH1B1	AD	Lissencephaly, subcortical laminar heterotropia	607432	Neurodevelopmental				
α1A-TubulinTUBA1AADLissencephaly 3 (LIS3)611603Neurodevelopmentalα8-TubulinTUBA8ARComplex cortical dysplasia with other brain malformations 8 (CDCBM8)613180NeurodevelopmentalB-Tubulin class 1TUBBADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)615771Neurodevelopmentalβ2A-Tubulin class IIbTUBB2AADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)615763Neurodevelopmentalβ2A-Tubulin class IIbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)610031Neurodevelopmental		NDE1	AR			Neurodevelopmental				
α8-TubulinTUBA8ARComplex cortical dysplasia with other brain malformations 8 (CDCBM8)613180NeurodevelopmentalB-Tubulin class 1TUBBADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)615771Neurodevelopmentalβ2A-Tubulin class IIbTUBB2AADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)615763Neurodevelopmentalβ2A-Tubulin class IIbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)610031Neurodevelopmental	Microtubule network									
α8-TubulinTUBA8ARComplex cortical dysplasia with other brain malformations 8 (CDCBM8)613180NeurodevelopmentalB-Tubulin class 1TUBBADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)615771Neurodevelopmentalβ2A-Tubulin class IIaTUBB2AADComplex cortical dysplasia with other brain malformations 6 (CDCBM6)615763Neurodevelopmentalβ2A-Tubulin class IIbTUBB2BADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)610031Neurodevelopmental	α1A-Tubulin	TUBA1A	AD	Lissencephaly 3 (LIS3)	611603	Neurodevelopmental				
β2A-Tubulin class IIaTUBB2AADComplex cortical dysplasia with other brain malformations 5 (CDCBM5)615763Neurodevelopmental Neurodevelopmentalβ2A-Tubulin class IIbTUBB2BADComplex cortical dysplasia with other brain610031Neurodevelopmental	α8-Tubulin	TUBA8	AR	Complex cortical dysplasia with other brain	613180					
'malformations 5 (CDCBM5) β2A-Tubulin class IIb TUBB2B AD Complex cortical dysplasia with other brain 610031	B-Tubulin class 1	TUBB	AD		615771	Neurodevelopmental				
	β2A-Tubulin class IIa	TUBB2A	AD		615763	Neurodevelopmental				
	β2A-Tubulin class IIb	TUBB2B	AD		610031	Neurodevelopmental				

	a ansport gene m		curotogicut uiscuse						
Protein complex	Gene	Inheritance	Disease	OMIM entry	Phenotype				
Microtubule network (cont.)									
β3-Tubulin class III	TUBB3	AD	Complex cortical dysplasia with other brain malformations 1 (CDCBM1)	614039	Neurodevelopmental				
		AD	Congenital fibrosis of extraocular muscles 3A (CFEOM3A)	600638	Neurodevelopmental				
β4B-Tubulin class IVa	TUBB4A	AD	Torsion dystonia 4 (DYT4)	128101	Neurodegenerative				
		AD	Hypomyelinating leukodystrophy 6 (HLD6)	612438	Neurodegenerative				
β4B-Tubulin class IVb	TUBB4B	AD	Leber congenital amaurosis with early-onset deafness (LCAEOD)	617879	Neurodegenerative				
β6-Tubulin class V	TUBB6	AD	Congenital facial palsy with ptosis and velopharyngeal dysfunction (FPVEPD)	617732	Neurodevelopmental				
γ1-Tubulin	TUBG1	AD	Complex cortical dysplasia with other brain malformations 4 (CDCBM4)	615412	Neurodevelopmental				

The table lists genes encoding components of the anterograde and retrograde transport complexes and microtubule network that have been implicated in neurological disease, along with their associated mode of inheritance and the nature of the phenotype (neurodevelopmental or neurodegenerative). AD, autosomal dominant; AR, autosomal recessive; NA, not applicable; OMIM, Online Mendelian Inheritance in Man; XL, X-linked. *Mutated transport protein is implicated in non-motile cilia as opposed to intracellular transport.

(REF.⁵⁸) and *DYNC1H1* (REF.⁵⁹). Before the discovery of human disease-causing mutations in *DYNC1H1*, similar missense mutations were reported in three *N*-ethyl-*N*-nitrosourea (ENU) mutant mouse models^{60,61}. In the case of the *Loa* mouse, the mutation was associated with a reduction in retrograde axonal transport speeds both in vitro and in vivo^{62,63}.

At first glance, these observations would seem to provide strong evidence in favour of a causal role for defective retrograde axonal transport in human motor neuron diseases, such as ALS. In humans, the SMALED-linked missense mutations in DYNC1H1 and BICD2 cause a developmental disorder of a-motor neurons, whereas in mice, similar but not identical mutations cause a developmental loss of y-motor and large-diameter 1a sensory neurons. In mice, the sensory neuron number is preserved at embryonic day 15, but dramatic loss of these neurons is observed by postnatal day 1 (REF.60), possibly as a result of defective retrograde nerve growth factor signalling63. Taken together, these findings suggest that the effects of deficits in retrograde axonal transport are most prominent during early motor and sensory neuron development, and particularly during periods of programmed cell death that are heavily dependent on efficient and timely retrograde neurotrophin signalling. However, in both mice and humans with missense mutations in DYCN1H1, the developmental loss of neurons remains static in adulthood with no evidence of progressive axonal degeneration, indicating that postnatal adult axons are impervious to modest perturbations in retrograde axonal transport, perhaps reflecting the differential demands of developing and mature axons.

N-Ethyl-*N*-nitrosourea (ENU). A potent mutagen

that is often used to generate mutant animal models.

Endosomes

Membranous organelles involved in intracellular transport, sorting and delivery of various substances, including growth factors, internalized from the cell exterior. Mutations in the retrograde transport machinery and neurodegeneration. DCTN1 encodes the p150^{Glued} CAP-Gly

subunit of dynactin, which is required for microtubule binding and processive retrograde transport³. Polymorphisms are common in this gene; however, missense mutations in four amino acid residues in the second exon cause distal hereditary motor neuropathy type 7 (DHMN7; G59S mutation) or Perry syndrome (G71A/E/R, T72P or Q74P mutations)⁶⁴⁻⁶⁶. Although the mutations are only a few amino acids apart, they give rise to vastly different phenotypes. DHMN7 is an autosomal dominant disorder beginning in the fourth to the sixth decade of life, and is characterized by bilateral vocal cord palsies. In addition, patients develop distal motor weakness often affecting the upper limbs that progresses in a slow and stable manner⁶⁴. Perry syndrome, on the other hand, is characterized by parkinsonism, psychiatric symptoms and hypoventilation. No motor neuron degeneration is observed in this condition, and post-mortem studies reveal neuronal loss in the substantia nigra and TAR DNA-binding protein 43 (TDP43) pathology⁶⁷.

The question of whether these disease-specific mutations impair retrograde axonal transport remains unresolved, with independent studies producing conflicting data. In a Drosophila melanogaster model of DHMN7, axonal transport of green fluorescent protein-tagged-Rab7 endosomes was not impaired68. This observation was replicated in a mouse model of the disease with evidence of motor nerve degeneration⁶⁹. In a separate study, primary mouse sensory neurons overexpressing the G59S mutant protein showed impaired retrograde lysosomal trafficking - an effect that was not replicated with Perry syndrome mutants70. A consistent finding in both studies, however, was the accumulation of $p150^{Glued}$ in distal axons. Moreover, in D. melanogaster motor axons, the G59S mutant led to the accumulation of dense synaptic vesicles and impaired synaptic transmission at the neuromuscular junction68. Thus, missense mutations in DCTN1 that cause motor nerve degeneration and nigral neuron degeneration do not seem to result in a general disruption of retrograde transport but might affect the trafficking of specific organelles, such as lysosomes, and might be neuron subtype specific.

Human mutations in *DYNC1H1* were initially linked to CMT⁷¹, suggesting that impairments in retrograde axonal transport are involved in peripheral nerve degeneration. However, subsequent clinical descriptions of

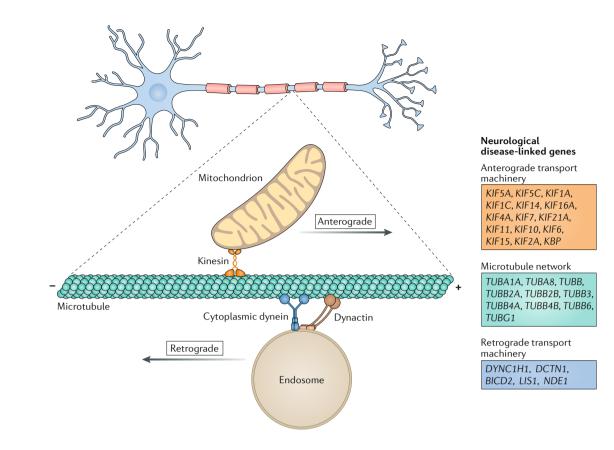


Fig. 1 | **The axonal transport machinery.** Mutations in genes that are integral to the anterograde and retrograde axonal transport machineries, as well as to the microtubule network, have been causally linked to many nervous system diseases (TABLE 1). Note that motor proteins can attach to and traffic many different cargoes and are not restricted to those depicted; for example, kinesin can transport vesicles and dynein can transport mitochondria. The components of the machinery are not shown to scale.

human *DYNC1H1* mutations consistently showed that they cause a developmental and non-progressive loss of motor neurons predominantly affecting the lower limbs, namely, SMALED. In fact, the clinical description of the original published family was of a motor-predominant disorder affecting the lower limbs, in keeping with a diagnosis of SMALED and incorrectly described as CMT.

Mutations in the anterograde transport machinery and neurodegeneration. The strongest genetic evidence implicating impaired axonal transport in neurodegeneration came from mutations in the two kinesin genes, KIF1A and KIF5A. Mutations in KIF1A give rise to various phenotypes: autosomal recessive loss-of-function mutations cause HSP72, a disease of progressive corticospinal tract degeneration with profound sensory neuropathy, and dominant de novo mutations cause a complex phenotype of MCD, HSP and CMT73. KIF1A is required for INM and neuronal progenitor cell proliferation and migration, and dominant-negative effects on this process are likely to explain the MCD⁴⁷. In addition, KIF1A transports the neurotrophin receptor TrkA to sensory axon terminals to promote their survival, and loss of KIF1A in mice and humans results in a sensory neuropathy, providing direct evidence that disrupted axonal transport of a specific cargo can lead to axonal degeneration⁷⁴. However, not all HSP-associated KIF1A mutations result in loss of function. Several *KIF1A* mutants were shown to have enhanced motility in vitro, resulting in increased frequency and speed of anterograde movements of synaptic vesicle precursors in *Caenorhabditis elegans* motor neurons in vivo, indicating that motor protein hyperactivity can also contribute to neurodegeneration⁷⁵.

Autosomal dominant mutations in KIF5A, clustering in the amino-terminal domain, were first described as a cause of HSP and peripheral neuropathy76. In vitro studies using microtubule gliding and cargo transport assays revealed that some, but not all, pathogenic mutations caused a reduction in transport velocities⁷⁷. The effects of these HSP-causing mutations on slow axonal transport of cytoskeletal proteins or the cytoplasmic dynein motor or on axonal transport have not yet been investigated in cellular or in vivo models, partly owing to the limited tools available to image slow axonal transport. Therefore, whether mutations in KIF5A cause peripheral and corticospinal nerve degeneration through deficits in axonal transport remains unclear. Mutations in the carboxy-terminal, cargo-binding domain of KIF5A have recently been linked to a large number of cases of ALS, suggesting that the anterograde delivery of specific cargoes to axon terminals is impaired in this condition78,79.

Autosomal dominant mutations in *KIF1B* were originally reported to cause CMT type 2 (CMT2) in a single family⁸⁰; however, the lack of confirmation in additional families casts doubt on the pathogenicity of these mutations.

Axonal transport and neurodegeneration

The mutations in transport machinery discussed above provide evidence that alterations in axonal trafficking can impair neuronal homeostasis and lead to neurological disease. It is conceivable, therefore, that disturbances in axonal transport, which have been reported in many, if not most, nervous system disorders^{17,18}, could be a major cause of associated neuropathology. However, compromised transport could also be a consequence of neuronal dysfunction and degeneration, and causation has proved difficult to demonstrate in vitro and in vivo. Several reviews have been published that discuss transport deficiencies in neuronal disorders across model systems^{9,12-18}. In this section, focusing principally on human and in vivo studies, we briefly discuss the evidence for and against the idea that transport disruptions contribute to the aetiology of neurological diseases that are not caused by the genetic mutations in transport machinery outlined above.

When axonal transport is perturbed, cargoes are likely to aberrantly accumulate and cause swellings along the axon, as has been shown through genetic disruption of the transport machinery in D. melanogaster and mice^{81,82}. This phenomenon has also been observed in disease-relevant neurons in post-mortem studies of patients with diverse neurological conditions. For example, the brains of patients with early-stage AD display swellings in basal forebrain axons before amyloid deposition⁸³, motor axons in patients with ALS accumulate phosphorylated neurofilament proteins and organelles in swellings that can selectively ensnare kinesin^{84,85,} and axonal accumulations of synaptic vesicles and a-synuclein have been observed in hippocampal neurons of patients with PD86. Moreover, a transport deficiency has been indirectly observed in patients with PD, using a method that implements heavy water pulses to assess kinetic biomarkers in cerebrospinal fluid⁸⁷.

Consistent with these findings, evidence indicates that quantitative and qualitative alterations in the transport machinery, including the microtubule cytoskeleton, are widespread in neurological disorders. For instance, motor protein expression levels are altered in AD⁸⁸, ALS⁸⁹, multiple sclerosis⁹⁰ and PD⁹¹ patient samples. Moreover, impairments in microtubule stability and function have been reported in the brains of patients with AD92,93 and in induced pluripotent stem cell (iPSC)derived dopaminergic neurons from patients with PD^{94,95}. These observations have been corroborated by studies in animal and cell models of many neuronal disorders^{10,96}, suggesting that impairment and/or deregulation of the cytoskeleton is a frequent pathological feature of neurodegeneration. However, although the findings from human cells and tissues are consistent with the idea that axonal transport disruptions are common in neurological disorders, they neither directly demonstrate transport perturbations nor prove causation.

iPSC-derived neurons in the study of axonal transport. Many studies are emerging in which individual fluorescently labelled cargoes were tracked while being transported along the axons of human iPSC-derived neurons. Motor neurons generated from CMT2 patients with dominant MFN2 or NEFL mutations displayed reduced mitochondrial transport velocities but no differences in the percentage of motile mitochondria⁹⁷. By contrast, the percentage mitochondrial mobility, but not the velocity, was affected in motor axons derived from patients with spinal muscular atrophy⁹⁸. This change occurred early in the disease course, was linked to swellings and was specific to the tissue involved in the disease, with no defects being observed in forebrain neurons. These two studies indicate that different aspects of axonal transport are selectively affected by disease, and that analysing various parameters⁹⁹ can potentially provide early mechanistic insight into the initial cause of transport disruption, for example, transport initiation versus maintenance, anterograde versus retrograde trafficking or rate versus frequency of transported organelles. The data also suggest that the reported transport disturbances are not likely to be simply due to poor neuronal health, as one would expect multiple dynamic properties of various cargoes to be altered if this was the case. Additional support for this notion is provided when transport defects are progressive and occur before signs of major cellular upheaval, including neuronal death, as has been reported for mitochondrial deficits in motor neurons derived from ALS patients with FUS mutations¹⁰⁰.

Mitochondria are the most frequently experimentally tracked axonal cargo; thus, much of what we know about axonal transport comes from this organelle¹⁰¹. Mitochondrial transport along axons is typified by frequent pausing, relatively slow speeds and bidirectional movements, in contrast to other cargoes, such as signalling endosomes and autophagosomes, which mainly move in the centripetal direction, and synaptic vesicle precursors and secretory granules, which are powered in the opposite direction. These differences are probably attributable to distinct cargo functions, energy requirements¹⁰², motors and adaptors^{12,36}, and regulatory mechanisms^{8,9}. Therefore, a disturbance in one cargo type does not necessarily imply that other cargoes are affected, as has often been documented^{103,104}. However, the disruptions could still have a common cause, such as a microtubule deficit that affects the motility of all motors, or the trafficking impairment could reflect a degenerating neuron that is incapable of maintaining homeostasis. Defective axonal transport of additional cargoes has been reported in human iPSC models of disease, for instance, mRNA in TDP43-associated ALS103 and amyloid precursor protein-containing vesicles in AD¹⁰⁵. However, multiple cargoes are yet to be routinely analysed in iPSC-derived neurons, as has been done in other systems^{62,103,106,107}, and such studies will be paramount if we are to better understand the full contribution of defective axonal transport to neurological disease.

Additional caveats to iPSC experiments include the considerable intrinsic and extrinsic variability that persists in iPSC models, despite continuous improvements¹⁰⁸. Moreover, we do not yet know how robustly a developmentally reprogrammed and re-differentiated cell can model adult-onset neurodegenerative conditions

in which the disease-targeted neurons can remain viable for many decades in patients. However, induced neurons directly converted from somatic cells provide a promising alternative to circumvent this issue¹⁰⁹.

Studying axonal transport in vivo. In vitro systems and ex vivo tissue preparations do not always accurately replicate the in vivo environment, especially when modelling dynamic, tightly regulated processes such as axonal transport¹¹⁰⁻¹¹³, which can be influenced by non-cellautonomous signalling^{114,115} and cell-cell interactions^{116,117}. This issue is particularly pertinent for discriminating between cell-autonomous and non-cell-autonomous pathomechanisms, which have been shown to contribute to diverse neuropathologies to varying degrees¹¹⁸. Moreover, neuronal activity^{119,120} and maturation¹⁰⁶ can differentially affect cargo trafficking, as can the location of the cargoes along the axon^{113,121}. In vivo transport experiments also have their limitations99 and similarly struggle with the pervasive difficulty of distinguishing cause from effect. Nonetheless, bona fide in vivo experiments, although often challenging, are likely to yield more consistent results that accurately reflect the in situ situation. In this section, we concentrate on evidence from in vivo models of neurological disease, in which the trafficking of individual cargoes was directly assessed in live organisms.

Selective expression of fluorescent proteins in distinct organelles has facilitated the assessment of axonal transport in a range of genetic model organisms. The combination of fluorescent reporter strains with an everexpanding repertoire of disease models has provided considerable evidence that impaired axonal transport can at least contribute to neuronal disease. For instance, intravital imaging in filleted D. melanogaster larvae has been used to model axonal transport impairments in various neurological diseases, including ALS^{103,104}, Friedreich ataxia¹²¹ and PD^{122,123}. In these studies, imaging was predominantly performed on motor axons of the segmental nerve, which is perhaps more pertinent to modelling of diseases that affect the motor system, such as ALS, than to non-motor neuron disorders, such as AD. Nonetheless, these findings have been corroborated by similar experiments assessing transport in mechanosensory neurons of C. elegans^{124,125} and motor and dopaminergic axons of zebrafish larvae^{126,127}. The latter model has an added advantage over C. elegans and flies of being a vertebrate with myelinated axons. However, one must be wary when interpreting results generated from larval-stage, non-mammalian organisms, especially D. melanogaster, which lack axonal transport-relevant pathways such as neurotrophin receptor signalling¹²⁸ and require major tissue disruption for imaging, and thus might not accurately replicate the complex environment of the human nervous system.

Mouse models of human neurological disease also have limitations. Intravital experiments in which axonal transport can be monitored in live, anaesthetized mice currently provide the most accurate setting in which to assess this dynamic process, and have provided some of the most compelling evidence that disturbed transport can contribute to neurological disease by enabling the identification of transport disturbance before symptom onset and cell death.

In vivo deficits in axonal transport of individual cargoes were first reported in the SOD1G93A mouse model of ALS⁶². Impaired trafficking of neurotrophin-containing signalling endosomes and mitochondria was observed in surgically exposed sciatic nerve axons of presymptomatic mutant mice; retrograde endosome transport speeds were significantly reduced before motor neuron loss and became progressively worse, and mitochondria showed an early increase in pausing in anterograde and retrograde directions without alterations in the proportions of moving mitochondria⁶². In addition, injection of a radiolabelled tracer into the ventral horn of the spinal cord in a SOD1^{G93A} mouse strain with a milder disease phenotype revealed pre-symptomatic deficits in slow anterograde transport of cytoskeletal proteins in ventral roots¹²⁹; these results were replicated in two additional mutant SOD1 strains (SOD1G37R and SOD1G85R)130. These data indicate that SOD1-linked ALS is associated with general disruption to the transport machinery that affects multiple cargoes and both directions of transport, suggesting an alteration in the microtubule network^{84,96}. Progressive, pre-symptomatic retrograde mitochondrial transport disturbances were independently verified using a second fluorescent reporter strain crossed with SOD1^{G93A} mice, and were replicated in the TDP43^{A315T} mutant transgenic mouse model of ALS131.

Impaired retrograde trafficking of signalling endosomes in live motor axons of the sciatic nerve was also reported in a newly developed TDP43^{M337V} mouse model of ALS. Unlike the previously discussed ALS mice, this model expresses the mutant transgene at nearendogenous levels, leading to neuromuscular pathology without motor neuron loss¹³². Deficits in signalling endosome dynamics manifested between 1.5 and 3 months and persisted until at least 9 months of age133. These results indicate that transport defects can occur in ALS mice without supraphysiological transgene expression, and that axonal transport disturbances, although intricately linked to neuromuscular phenotypes, do not necessarily cause immediate motor neuron death. Moreover, given that the signalling endosome transport deficit is of a similar severity between SOD1G93A and TDP43M337V mice, which show major differences in neurodegeneration and survival, additional ALS pathomechanisms are likely to operate in these models¹³⁴.

The data discussed so far suggest that in vivo transport defects are common to all mouse models of ALS. However, a novel humanized FUS mutant mouse, $Fus^{\Delta 14/+}$, which displays overt and progressive motor neuron loss from 1 year of age¹³⁵, shows no clear impairment in axonal transport of signalling endosomes at 3 and 12 months, and only a minor increase in pausing by 18 months¹³³. Similarly, motor neuron degeneration was dissociated from transport disruption in ex vivo intercostal and tibialis nerve preparations from SOD1^{G85R} mice, which did not show disturbances in mitochondrial flux or transport dynamics of cholera toxin B subunitlabelled vesicles¹³⁶. This result does not preclude disruption of transport of other cargoes or in motor axons innervating different muscles. However, these studies

suggest that global defects in transport are not common to all ALS mouse models, and that mutations in different genes lead to inherent differences in the pathogenesis of the disease. Moreover, the observation that stark motor neuron loss can occur in the absence of transport disruption in Fus^{Δ14/+} mice indicates that degenerating neurons do not always display defects in axonal trafficking before neuronal death. Perhaps counter to expectation, this idea was supported by in vivo observations from a mouse model of spinal and bulbar muscular atrophy, which also shows neuromuscular phenotypes and motor neuron loss yet no disruption in the trafficking of signalling endosomes in sciatic nerve axons¹³⁷.

Taken together, these findings suggest that disrupted axonal transport is not simply a non-specific by-product of neurodegeneration, and that the trafficking defects reported in diverse neurological disease models could have a causative and/or contributory role in the pathology. Indeed, the evidence from the mouse models of ALS indicates that transport disturbances are one of the earliest observable phenotypes. Similarly, acute and chronic mouse models of multiple sclerosis displayed defects in both anterograde and retrograde transport of mitochondria and peroxisomes in normal-appearing spinal cord axons in vivo138. These defects resulted in diminished organelle supply to the periphery and preceded the development of morphological abnormalities in axons, cargoes and microtubules138, consistent with the idea that impaired axonal transport contributes to secondary axonal loss in multiple sclerosis.

In contrast to the in vivo results obtained in mice, axonal transport defects have been reported in D. melanogaster and iPSC models of mutant FUS-linked ALS^{103,104} and in squid axoplasm and ex vivo mouse sciatic nerve models of spinal and bulbar muscular atrophy^{139,140}. These discrepancies between models could reflect distinctions in time points or disease-associated mutations, but are probably more likely to be determined by the model system. Therefore, careful consideration must be paid to the experimental model before axonal transport disruption is invoked or disregarded as the cause of neurodegeneration. On balance, the frequency of axonal transport perturbation in disease models suggests that trafficking alterations contribute to neuronal dysfunction in numerous neurological conditions, especially those where broad agreement exists across models, such as mutant TDP43-linked ALS^{103,104,131,133,141} and SOD1-linked ALS62,128,130,136,142-144.

Axonal transport as a drug target

If impairments in axonal transport cause or contribute to neurological disease, targeting of deficient cargo trafficking is an attractive therapeutic strategy. Promisingly, in vivo studies in mouse models of disease indicate that such defects can be acutely reversed^{138,144}, creating scope to develop and test drugs that modulate transport.

A relatively non-specific approach would be to target neuronal microtubules, the post-translational modification and dynamics of which are altered — thereby possibly exacerbating transport anomalies — in several neurodegenerative diseases^{10,11,96}. Microtubulestabilizing compounds have shown positive effects in models of various diseases, including AD, ALS and PD⁹⁶, and also in spinal cord injury¹⁴⁵, the response to which is dependent on axonal transport^{7,146}. However, increased microtubule stabilization produced negative effects in the SOD1^{G93A} mouse model of ALS¹⁴⁷. Similarly, chemical inhibition of histone deacetylase 6 (HDAC6), which removes acetyl groups from microtubules, thereby diminishing their affinity for motor proteins¹⁴⁸, has been shown to reverse axonal transport deficits in models of ALS¹⁰⁰, Huntington disease¹⁴⁹ and CMT^{150,151}. Consistent with these findings, genetic deletion of Hdac6 can extend SOD1^{G93A} mouse survival and improve motor axon integrity¹⁵². HDAC6 also affects transport through deacetylation of a protein called MIRO1, which is crucial for the calcium-dependent recruitment of motor complexes to mitochondria to facilitate their trafficking¹⁵³; thus, the transport-related effects of HDAC6 inhibition are likely to be multifactorial.

Disease-related impairments in axonal transport are frequently motor protein specific and/or cargo specific, or affect particular dynamic properties such as the percentage mobility, speed or overall flux of cargoes. Therefore, broad modulation of axonal transport might have undesired consequences, such as those associated with the delivery of superfluous cargoes or increases in transport speeds above normal levels, as reported in models of CMT2B (REFS^{154,155}) and HSP⁷⁵. This issue is particularly relevant for mitochondria, which, unlike most transported organelles, pause frequently and become anchored at specific points along the axon that require a constant energy supply or calcium buffering¹⁰¹. A twofold increase in the motility of mitochondria, through genetic knockout of the mitochondria-specific docking protein syntaphilin, had no impact on disease progression in SOD1^{G93A} mice¹⁵⁶, although the caveat remains that syntaphilin ablation has not been confirmed to modify mitochondrial transport in motor axons or in vivo. Negative stress-related signals can be retrogradely transported along axons115 and, if enhanced, might also prove detrimental¹⁵⁷. Thus, global modification of axonal transport, especially affecting cargoes that are not altered in a disease (either due to cargo specificity or axonal transport being completely unaffected), might not be an ideal treatment strategy for all neurological conditions, and a tailored approach aimed at particular transport mechanisms and organelles could prove more beneficial.

Protein kinases are vital for efficient axonal transport, as they directly phosphorylate many key components of the transport machinery^{8,9}. For example, extracellular signal-regulated kinase ERK1/2 can phosphorylate the dynein intermediate chain to specifically enhance the retrograde transport of signalling endosomes, but not of mitochondria¹¹⁴; JNK1-mediated phosphorylation of adaptor protein JIP1 stabilizes the interaction of JIP1 with kinesin, thereby promoting anterograde transport of amyloid precursor protein-containing vesicles over retrograde transport¹⁵⁸; and CDK5 can phosphorylate neurofilaments, thereby inhibiting their slow axonal transport¹⁵⁹. Disruptions in these and other kinase signalling pathways that are crucial for the maintenance of axonal trafficking have been reported in several

neurological conditions^{8,9}. For instance, p38 mitogenactivated protein kinase (MAPK) can negatively regulate axonal transport through phosphorylation of motor and cytoskeletal proteins^{142,160}, and its overactivation in the spinal cord in patients and mice with ALS might contribute to the impairments in fast and slow axonal transport that have been reported in this disease^{142,161-163}. Inhibition of p38 MAPK can preserve motor neuron integrity and marginally increases SOD1^{G93A} mouse survival¹⁶³. This strategy was shown to restore signalling endosome transport dynamics in both in vitro primary motor neurons and in vivo sciatic nerve axons of SOD1G93A ALS mice144. Although the long-term impact of this treatment could not be assessed owing to the systemic toxicity of the experimental drug, this study provides proof of principle that pharmacological modification of diseaseimplicated kinases is a promising therapeutic avenue for neurological conditions. However, whether such a strategy can be used to treat transport deficiencies when the targeted kinase is not directly implicated in pathology remains to be seen.

Modification of protein kinases in the nervous system has its challenges¹⁶⁴, including drug traversal of the blood-brain barrier. In addition, many protein kinases involved in axonal trafficking have multiple transportrelated and non-transport-related targets, are involved in diverse processes across cell types and show considerable crosstalk in downstream signalling cascades¹⁶⁵⁻¹⁶⁷. Other important considerations are that drugs can differentially influence transport depending on the axonal location, at least in cultured neurons¹⁰⁷, and that retrograde and anterograde transport are not mutually independent; for example, kinesin 1 delivers cytoplasmic dynein to distal axons⁴¹ and, accordingly, malfunctioning of one motor can affect transport in the opposite direction^{168,169}. Therefore, although targeting of axonal transport is in theory a promising therapeutic strategy for neurological disease, the long-term viability and impact of such an approach requires considerable investigation. Encouragingly, with a detailed understanding of disease pathways, multiple key nodes of kinase signalling pathways might be modulated to achieve amelioration of neurological disease phenotypes¹⁷⁰. In the interim, studies in which the ramifications of pharmacological transport correction can be assessed will be invaluable in further determining the importance of axonal transport to neurological diseases. Similarly, kinetic biomarkers, such as those assessed in cerebrospinal fluid of patients with PD87, might provide a method to monitor the disruption of axonal transport in humans while providing a sensitive measure of neuronal dysfunction and the impact of treatment.

Conclusions

The delivery of substances to precise subcellular locations is vital to maintaining cell function and viability, and nowhere is this more important than in the body's longest and arguably most polarized and energydemanding cell type, the neuron. Axons can reach well over 1 m in length in humans and require specialized mechanisms to orchestrate the intricate, bidirectional distribution of multiple cargoes between cell bodies and axon terminals. Therefore, it is not surprising that deficiencies in axonal transport have been invoked as a major causative factor in a range of neurological diseases. However, the evidence is perhaps not as decisive as one might initially expect, not least because of difficulties in deciphering whether early trafficking disturbances cause neuronal dysfunction or whether nerve degeneration leads to transport defects. Although the latter scenario can ultimately contribute to neuropathology and exacerbate the demise of a degenerating neuron, it is not consistent with defective transport playing a central role in disease aetiology and substantially reduces the potential impact of targeting this basic neuronal process for therapeutic intervention. Nevertheless, we have highlighted several diseases in which considerable evidence across model systems supports a role for disturbed axonal transport in neuropathology, including some examples where defective axonal trafficking is one of the first identifiable phenotypes in the in vivo models. Given the importance of non-cell-autonomous mechanisms to axonal transport regulation, developments in longitudinal intravital imaging should be incorporated into future studies of this process.

As we have discussed, mutations in many genes that encode constituents of axonal transport machinery have been linked to human diseases. Most of these conditions are neurological or display a strong neuronal component, which is indicative of the importance of transport machinery to neuron integrity. Additional mutations in other key transport genes are likely to be identified, but owing to the essential nature of axonal transport, complete loss-of-function mutations in such genes are likely to be embryonic lethal.

Numerous therapeutic strategies that augment axonal transport have been tested in disease models and have shown signs of efficacy. The feasibility of gene therapy to combat transport deficiencies has been demonstrated in ALS mice¹⁷¹ and is an appealing area for future research, both to help further elucidate transport mechanisms and to highlight potentially viable therapeutic strategies for currently incurable nervous system disorders.

Published online: 26 September 2019

- Hirokawa, N. & Tanaka, Y. Kinesin superfamily proteins (KIFs): various functions and their relevance for important phenomena in life and diseases. *Exp. Cell Res.* 334, 16–25 (2015).
- Terenzio, M., Schiavo, G. & Fainzilber, M. Compartmentalized signaling in neurons: from cell biology to neuroscience. *Neuron* 96, 667–679 (2017).
- Reck-Peterson, S. L., Redwine, W. B., Vale, R. D. & Carter, A. P. The cytoplasmic dynein transport machinery and its many cargoes. *Nat. Rev. Mol. Cell Biol.* 19, 382–398 (2018).
- Villarroel-Campos, D., Schiavo, G. & Lazo, O. M. The many disguises of the signalling endosome. *FEBS Lett.* 592, 3615–3632 (2018).
- Maday, S. Mechanisms of neuronal homeostasis: autophagy in the axon. *Brain Res.* 1649, 143–150 (2016).
- Ferguson, S. M. Axonal transport and maturation of lysosomes. *Curr. Opin. Neurobiol.* 51, 45–51 (2018).
- Rishal, I. & Fainzilber, M. Axon–soma communication in neuronal injury. *Nat. Rev. Neurosci.* 15, 32–42 (2014).
- Gibbs, K. L., Greensmith, L. & Schiavo, G. Regulation of axonal transport by protein kinases. *Trends Biochem. Sci.* 40, 597–610 (2015).
- Brady, S. T. & Morfini, G. A. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. *Neurobiol. Dis.* 105, 273–282 (2017).
- Dubey, J., Ratnakaran, N. & Koushika, S. P. Neurodegeneration and microtubule dynamics: death by a thousand cuts. *Front. Cell. Neurosci.* 9, 343 (2015).

- Barlan, K. & Gelfand, V. I. Microtubule-based transport and the distribution, tethering, and organization of organelles. *Cold Spring Harb. Perspect. Biol.* 9, a025817 (2017).
- Hirokawa, N., Niwa, S. & Tanaka, Y. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. *Neuron* 68, 610–638 (2010).
- Hinckelmann, M.-V., Zala, D. & Saudou, F. Releasing the brake: restoring fast axonal transport in neurodegenerative disorders. *Trends Cell Biol.* 23, 634–643 (2013).
- Maday, S., Twelvetrees, A. E., Moughamian, A. J. & Holzbaur, E. L. F. Axonal transport: cargo-specific mechanisms of motility and regulation. *Neuron* 84, 292–309 (2014).
- Neefjes, J. & van der Kant, R. Stuck in traffic: an emerging theme in diseases of the nervous system. *Trends Neurosci.* 37, 66–76 (2014).
- DiMauro, S., Schon, E. A., Carelli, V. & Hirano, M. The clinical maze of mitochondrial neurology. *Nat. Rev. Neurol.* 9, 429–444 (2013).
- Millecamps, S. & Julien, J.-P. Axonal transport deficits and neurodegenerative diseases. *Nat. Rev. Neurosci.* 14, 161–176 (2013).
- Prior, R., Van Helleputte, L., Benoy, V. & Van Den Bosch, L. Defective axonal transport: a common pathological mechanism in inherited and acquired peripheral neuropathies. *Neurobiol. Dis.* **105**, 300–320 (2017).
- Milde, S., Adalbert, R., Elaman, M. H. & Coleman, M. P. Axonal transport declines with age in two distinct phases separated by a period of relative stability. *Neurobiol. Aging* 36, 971–981 (2015).
- Vagnoni, A., Hoffmann, P. C. & Bullock, S. L. Reducing Lissencephaly-1 levels augments mitochondrial transport and has a protective effect in adult *Drosophila* neurons. *J. Cell Sci.* **129**, 178–190 (2016).
- Sleigh, J. N. & Schiavo, G. Older but not slower: aging does not alter axonal transport dynamics of signalling endosomes *in vivo*. *Matters* https://doi.org/10.19185/ matters.201605000018 (2016).
- Brouhard, G. J. & Rice, L. M. Microtubule dynamics: an interplay of biochemistry and mechanics. *Nat. Rev. Mol. Cell Biol.* 19, 451–463 (2018).
- Rao, A. N. & Baas, P. W. Polarity sorting of microtubules in the axon. *Trends Neurosci.* 41, 77–88 (2018).
 Baas, P. W., Rao, R. N., Matamoros, A. J. & Leo, L.
- Baas, P. W., Rao, R. N., Matamoros, A. J. & Leo, L. Stability properties of neuronal microtubules. *Cytoskeleton* **73**, 442–460 (2016).
- Miki, H., Setou, M., Kaneshiro, K. & Hirokawa, N. All kinesin superfamily protein, KIF, genes in mouse and human. *Proc. Natl Acad. Sci. USA* 98, 7004–7011 (2001).
- Carter, A. P., Diamant, A. G. & Urnavicius, L. How dynein and dynactin transport cargos: a structural perspective. *Curr. Opin. Struct. Biol.* **37**, 62–70 (2016).
- Zhang, K. et al. Cryo-EM reveals how human cytoplasmic dynein is auto-inhibited and activated. *Cell* 169, 1303–1314 (2017).
- McKenney, R. J., Huynh, W., Tanenbaum, M. E., Bhabha, G. & Vale, R. D. Activation of cytoplasmic dynein motility by dynactin–cargo adapter complexes. *Science* 345, 337–341 (2014).
- Schlager, M. A. et al. Bicaudal D family adaptor proteins control the velocity of Dynein-based movements. *Cell Rep.* 8, 1248–1256 (2014).
- Budzinska, M., Wicher, K. B. & Terenzio, M. Neuronal roles of the bicaudal D family of motor adaptors. *Vitam. Horm.* **104**, 133–152 (2017).
- DeSantis, M. E. et al. Lis1 has two opposing modes of regulating cytoplasmic dynein. *Cell* **170**, 1197–1208 (2017).
- Huang, J., Roberts, A. J., Leschziner, A. E. & Reck-Peterson, S. L. Lis1 acts as a "dutch" between the ATPase and microtubule-binding domains of the dynein motor. *Cell* 150, 975–986 (2012).
- Baumbach, J. et al. Lissencephaly-1 is a contextdependent regulator of the human dynein complex. *eLife* 6, e21768 (2017).
- Yi, J. Y. et al. High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport. J. Cell Biol. 195, 193–201 (2011).
- Zyłkiewicz, E. et al. The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein. *J. Cell Biol.* **192**, 433–445 (2011).
- Olenick, M. A. & Holbaur, E. L. F. Dynein activators and adaptors at a glance. J. Cell Sci. 132, jcs227132 (2019).

- Griffin, J. W., Price, D. L., Drachman, D. B. & Engel, W. K. Axonal transport to and from the motor nerve ending. *Ann. N. Y. Acad. Sci.* 274, 31–45 (1976).
- 38. Roy, S. Seeing the unseen: the hidden world of slow axonal transport. *Neuroscientist* **20**, 71–81 (2014).
- Brown, A., Wang, L. & Jung, P. Stochastic simulation of neurofilament transport in axons: the "stop-and-go" hypothesis. *Mol. Biol. Cell* 16, 4243–4255 (2005).
 Garner, J. A. & Mahler, H. R. Biogenesis of presynaptic
- terminal proteins. *J. Neurochem.* **49**, 905–915 (1987).
- Twelvetrees, A. E. et al. The dynamic localization of cytoplasmic dynein in neurons is driven by kinesin-1. *Neuron* 90, 1000–1015 (2016).
 Allen R D, Metuzals I, Tasaki J, Brady S, T δ.
- Allen, R. D., Metuzals, J., Tasaki, I., Brady, S. T. & Gilbert, S. P. Fast axonal transport in squid giant axon. *Science* 218, 1127–1129 (1982).
- Brady, S. T., Lasek, R. J. & Allen, R. D. Fast axonal transport in extruded axoplasm from squid giant axon. *Science* 218, 1129–1131 (1982).
 Klinman, F. & Holzhaur, F. L. Walking forward with
- 44. Klinman, E. & Holzbaur, E. L. F. Walking forward with kinesin. *Trends Neurosci.* **41**, 555–556 (2018).
- Schiavo, G., Greensmith, L., Hafezparast, M. & Fisher, E. M. C. Cytoplasmic dynein heavy chain: the servant of many masters. *Trends Neurosci.* 36, 641–651 (2013).
- Poirier, K. et al. Mutations in *TUBG1*, *DYNC1H1*, *KIF5C* and *KIF2A* cause malformations of cortical development and microcephaly. *Nat. Genet.* 45, 639–647 (2013).
- Tsai, J.-W., Lian, W.-N., Kemal, S., Kriegstein, A. R. & Vallee, R. B. Kinesin 3 and cytoplasmic dynein mediate interkinetic nuclear migration in neural stem cells. *Nat. Neurosci.* 13, 1463–1471 (2010).
- Doobin, D. J., Kemal, S., Dantas, T. J. & Vallee, R. B. Severe NDE I-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. *Nat. Commun.* 7, 12551 (2016).
- Hu, D. J.-K. et al. Dynein recruitment to nuclear pores activates apical nuclear migration and mitotic entry in brain progenitor cells. *Cell* **154**, 1300–1313 (2013).
- Tsai, J.-W., Bremner, K. H. & Vallee, R. B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. *Nat. Neurosci.* 10, 970–979 (2007).
- Ori-McKenney, K. M. & Vallee, R. B. Neuronal migration defects in the Loa dynein mutant mouse. *Neural Dev.* 6, 26 (2011).
- Poirier, K. et al. Mutations in the neuronal β-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. *Hum. Mol. Genet.* 19, 4462–4473 (2010).
- Jaglin, X. H. et al. Mutations in the β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat. Genet. 41, 746–752 (2009).
- Yamada, K. et al. Heterozygous mutations of the kinesin *KIF21A* in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). *Nat. Genet.* **35**, 318–321 (2003).
- Cheng, L. et al. Human CFEOM1 mutations attenuate KIF21A autoinhibition and cause oculomotor axon stalling. *Neuron* 82, 334–349 (2014).
- Scoto, M. et al. Novel mutations expand the clinical spectrum of *DYNC1H1*-associated spinal muscular atrophy. *Neurol.* 84, 668–679 (2015).
- Rossor, A. M. et al. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in *BICD2. Brain* **138**, 293–310 (2015).
- Huynh, W. & Vale, R. D. Disease-associated mutations in human BICD2 hyperactivate motility of dynein– dynactin. J. Cell Biol. 216, 3051–3060 (2017).
- Hoang, H. T., Schlager, M. A., Carter, A. P. & Bullock, S. L. DYNC1H1 mutations associated with neurological diseases compromise processivity of dynein–dynactin–cargo adaptor complexes. *Proc. Natl* Acad. Sci. USA 114, E1597–E1606 (2017).
- Chen, X.-J. et al. Proprioceptive sensory neuropathy in mice with a mutation in the cytoplasmic Dynein heavy chain 1 gene. J. Neurosci. 27, 14515–14524 (2007).
- Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. *Science* **300**, 808–812 (2003).
- Bilsland, L. G. et al. Deficits in axonal transport precede ALS symptoms *in vivo. Proc. Natl Acad. Sci.* USA 107, 20523–20528 (2010).
- Zhao, J. et al. Dync1h1 mutation causes proprioceptive sensory neuron loss and impaired retrograde axonal transport of dorsal root ganglion neurons. CNS Neurosci. Ther. 22, 593–601 (2016).
- Hwang, S. H. et al. Distal hereditary motor neuropathy type 7B with Dynactin 1 mutation. *Mol. Med. Rep.* 14, 3362–3368 (2016).

- 65. Farrer, M. J. et al. DCTN1 mutations in Perry
- syndrome. *Nat. Genet.* **41**, 163–165 (2009). 66. Puls, I. et al. Mutant dynactin in motor neuron
- disease. *Nat. Genet.* 33, 455–456 (2003).
 Mishima, T. et al. Perry syndrome: a distinctive type of TDP-43 proteinopathy. *J. Neuropathol. Exp. Neurol.*
- 76, 676–682 (2017).
 68. Lloyd, T. E. et al. The p150^{Glast} CAP-Gly domain regulates initiation of retrograde transport at synaptic
- Kermini. Neuron 74, 344–360 (2012).
 Chevalier-Larsen, E. S., Wallace, K. E., Pennise, C. R. & Holzbaur, E. L. F. Lysosomal proliferation and distal
- a Holzbaur, E. L. F. Lysosomal proliferation and dista degeneration in motor neurons expressing the G59S mutation in the p150^{clued} subunit of dynactin. *Hum. Mol. Genet.* **17**, 1946–1955 (2008).
- Moughamian, A. J. & Holzbaur, E. L. F. Dynactin is required for transport initiation from the distal axon. *Neuron* 74, 331–343 (2012).
- Weedon, M. N. et al. Exome sequencing identifies a dync1h1 mutation in a large pedigree with dominant axonal Charcot–Marie–Tooth disease. Am. J. Hum. Genet. 89, 308–312 (2011).
- Rivière, J.-B. et al. KIF1A, an axonal transporter of synaptic vesicles, is mutated in hereditary sensory and autonomic neuropathy type 2. *Am. J. Hum. Genet.* 89, 219–230 (2011).
- Lee, J.-R. et al. *De novo* mutations in the motor domain of KIF1A cause cognitive impairment, spastic paraparesis, axonal neuropathy, and cerebellar atrophy. *Hum. Mutat.* 36, 69–78 (2015).
- Tanaka, Y. et al. The molecular motor KIF1A transports the TrkA neurotrophin receptor and is essential for sensory neuron survival and function. *Neuron* 90, 1215–1229 (2016).
- Chiba, K. et al. Disease-associated mutations hyperactivate KIF1A motility and anterograde axonal transport of synaptic vesicle precursors. *Proc. Natl Acad. Sci. USA* https://doi.org/10.1073/pnas. 1905690116 (2019).
- Reid, E. et al. A kinesin heavy chain (*KIF5A*) mutation in hereditary spastic paraplegia (SPG10). *Am. J. Hum. Genet.* **71**, 1189–1194 (2002).
- 77. Füger, P. et al. Spastic paraplegia mutation N256S in the neuronal microtubule motor KIF5A disrupts axonal transport in a *Drosophila* HSP model. *PLOS Genet.* 8, e1003066 (2012).
- Brenner, D. et al. Hot-spot *KIF5A* mutations cause familial ALS. *Brain* 141, 688–697 (2018).
 Nicolas, A. et al. Genome-wide analyses identify *KIF5A*
- Nicolas, A. et al. Genome-wide analyses identify *KIF5A* as a novel ALS gene. *Neuron* 97, 1268–1283 (2018).
- Zhao, C. et al. Charcot–Marie–Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. *Cell* **105**, 587–597 (2001).
- Martin, M. et al. Cytoplasmic dynein, the dynactin complex, and kinesin are interdependent and essential for fast axonal transport. *Mol. Biol. Cell* **10**, 3717–3728 (1999).
- LaMonte, B. H. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. *Neuron* 34, 715–727 (2002).
- Stokin, G. B. et al. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. *Science* **307**, 1282–1288 (2005).
- De Vos, K. J. & Hafezparast, M. Neurobiology of axonal transport defects in motor neuron diseases: opportunities for translational research? *Neurobiol. Dis.* 105, 283–299 (2017).
- Toyoshima, I. et al. Kinesin and cytoplasmic dynein in spinal spheroids with motor neuron disease. *J. Neurol. Sci.* 159, 38–44 (1998).
- Galvin, J. E., Uryu, K., Lee, V. M. & Trojanowski, J. O. Axon pathology in Parkinson's disease and Lewy body dementia hippocampus contains α-, β-, and γ-synuclein. *Proc. Natl Acad. Sci. USA* 96, 13450–13455 (1999).
- Fanara, P. et al. Cerebrospinal fluid-based kinetic biomarkers of axonal transport in monitoring neurodegeneration. *J. Clin. Invest.* **122**, 3159–3169 (2012).
- Hares, K. et al. Overexpression of kinesin superfamily motor proteins in Alzheimer's disease. J. Alzheimers Dis. 60, 1511–1524 (2017).
- Pantelidou, M. et al. Differential expression of molecular motors in the motor cortex of sporadic ALS. *Neurobiol. Dis.* 26, 577–589 (2007).
- Hares, K. et al. Axonal motor protein KIF5A and associated cargo deficits in multiple sclerosis lesional and normal-appearing white matter. *Neuropathol. Appl. Neurobiol.* 43, 227–241 (2017).
- Chu, Y. et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease. *Brain* 135, 2058–2073 (2012).

- 92 Cash A D et al. Microtubule reduction in Alzheimer's disease and aging is independent of tau filament formation. Am. J. Pathol. 162, 1623–1627 (2003).
- Zhang, F. et al. Posttranslational modifications of 93. α-tubulin in Alzheimer disease. Transl. Neurodegener. 4.9 (2015)
- Ren, Y. et al. Parkin mutations reduce the complexity 94 of neuronal processes in iPSC-derived human neurons. Stem Cells 33, 68–78 (2015).
- Cartelli, D. et al. Parkin absence accelerates 95. microtubule aging in dopaminergic neurons. Neurobiol. Aging 61, 66–74 (2018).
- Brunden, K. R., Lee, V. M.-Y., Smith, A. B., 96 Trojanowski, J. Q. & Ballatore, C. Altered microtubule dynamics in neurodegenerative disease: therapeutic potential of microtubule-stabilizing drugs. *Neurobiol. Dis.* **105**, 328–335 (2017).
- 97. Saporta, M. A. et al. Axonal Charcot–Marie– Tooth disease patient-derived motor neurons demonstrate disease-specific phenotypes including abnormal electrophysiological properties. Exp. Neurol. **263**, 190–199 (2015). Xu, C.-C., Denton, K. R., Wang, Z.-B., Zhang, X. &
- 98 Li, X.-J. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy. Dis. Model. Mech. **9**, 39–49 (2016).
- Sleigh, J. N., Vagnoni, A., Twelvetrees, A. E. & Schiavo, G. Methodological advances in imaging 99 intravital axonal transport. F1000Res. 6, 200 (2017).
- 100. Guo, W. et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat. Commun. 8, 861 (2017).
- Plucińska, G. & Misgeld, T. Imaging of neuronal mitochondria in situ. Curr. Opin. Neurobiol. 39, 152-163 (2016).
- 102. Hinckelmann, M.-V. et al. Self-propelling vesicles define glycolysis as the minimal energy machinery for neuronal transport. Nat. Commun. 7, 13233 (2016).
- 103. Alami, N. H. et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81, 536–543 (2014).
- 104. Baldwin, K. R., Godena, V. K., Hewitt, V. L. & Whitworth, A. J. Axonal transport defects are a common phenotype in *Drosophila* models of ALS. *Hum. Mol. Genet.* **25**, 2378–2392 (2016). 105. Lacovich, V. et al. Tau isoforms imbalance impairs the
- axonal transport of the amyloid precursor protein in human neurons. J. Neurosci. 37, 58-69 (2017).
- 106. Moutaux, E. et al. Neuronal network maturation differently affects secretory vesicles and mitochondria transport in axons. *Sci. Rep.* **8**, 13429 (2018).
- 107. Pal, A. et al. High content organelle trafficking enables disease state profiling as powerful tool for disease modelling. Sci. Data 5, 180241 (2018).
- 108. Berry, B. J., Smith, A. S. T., Young, J. E. & Mack, D. L. Advances and current challenges associated with the use of human induced pluripotent stem cells in modeling neurodegenerative disease. Cells Tissues Organs 205, 331-349 (2018).
- Drouin-Ouellet, J., Pircs, K., Barker, R. A., Jakobsson, J. & Parmar, M. Direct neuronal reprogramming for disease modeling studies using patient-derived neurons: what have we learned? Front. Neurosci. 11 530 (2017).
- 110. Gibbs, K. L., Kalmar, B., Sleigh, J. N., Greensmith, L. & Schiavo, C. *In vivo* imaging of axonal transport in murine motor and sensory neurons. *J. Neurosci.* Methods 257, 26-33 (2016).
- 111. Lewis, T. L., Turi, G. F., Kwon, S.-K., Losonczy, A. & Polleux, F. Progressive decrease of mitochondrial motility during maturation of cortical axons *in vitro* and in vivo. Curr. Biol. 26, 2602–2608 (2016).
- 112. Smit-Rigter, L. et al. Mitochondrial dynamics in visual cortex are limited in vivo and not affected by axonal structural plasticity. Curr. Biol. 26, 2609–2616 (2016)
- 113. Knabbe, J., Nassal, J. P., Verhage, M. & Kuner, T. Secretory vesicle trafficking in awake and anaesthetized mice: differential speeds in axons versus synapses
- J. Physiol. **596**, 3759–3773 (2018). 114. Mitchell, D. J. et al. Trk activation of the ERK1/2 kinase pathway stimulates intermediate chain phosphorylation and recruits cytoplasmic dynein to signaling endosomes for retrograde axonal transport. J. Neurosci. 32, 15495–15510 (2012).
- 115. Pathak, A. et al. Retrograde degenerative signaling mediated by the p75 neurotrophin receptor requires p150^{Glued} deacetylation by axonal HDAC1. Dev. Cell 46, 376–387 (2018).

- 116. Kirvu-Seo, S., Ohno, N., Kidd, G. J., Komuro, H. & Trapp, B. D. Demvelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J. Neurosci. 30, 6658–6666 (2010).
- 117. Badal, K. K. et al. Synapse formation activates a transcriptional program for persistent enhancement in the bi-directional transport of mitochondria. *Cell Rep.* 26, 507-517 (2019).
- Smith, S. E. & Bonni, A. in The Molecular and Cellular 118. Basis of Neurodegenerative Diseases (ed. Wolfe, M. S.) 415–440 (Elsevier, 2018).
- 119. Sajic, M. et al. Impulse conduction increases mitochondrial transport in adult mammalian peripheral nerves in vivo. PLOS Biol. 11, e1001754 (2013)
- 120. Wang, T. et al. Flux of signalling endosomes undergoing axonal retrograde transport is encoded by presynaptic activity and TrkB. Nat. Commun. 7, 12976 (2016).
- 121. Shidara, Y. & Hollenbeck, P. J. Defects in mitochondrial axonal transport and membrane potential without increased reactive oxygen species production in a Drosophila model of Friedreich ataxia. J. Neurosci. **30**, 11369–11378 (2010).
- 122. Devireddy, S., Liu, A., Lampe, T. & Hollenbeck, P. J. The organization of mitochondrial quality control and life cycle in the nervous system *in vivo* in the absence of PINK1. J. Neurosci. **35**, 9391–9401 (2015).
- 123. Godena, V. K. et al. Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. *Nat. Commun.* **5**, 5245 (2014). 124. Fatouros, C. et al. Inhibition of tau aggregation in
- a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum. Mol. Genet. 21 3587-3603 (2012).
- 125. Butler, V. J. et al. Tau/MAPT disease-associated variant A152T alters tau function and toxicity via impaired retrograde axonal transport. Hum. Mol. Genet. 28, 1498–1514 (2019).
- 126. Bergamin, G., Cieri, D., Vazza, G., Argenton, F. & Mostacciuolo, M. L. Zebrafish Tg(hb9:MTS-Kaede): a new in vivo tool for studying the axonal movement of mitochondria. Biochim. Biophys. Acta 1860, 1247-1255 (2016).
- 127. Dukes, A. A. et al. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP⁺ exposure. *Neurobiol. Dis.* 95, 238-249 (2016).
- 128. Bothwell, M. Recent advances in understanding
- Dourner, Incern audres in microsolation generation in the search of the s are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation. J. Cell Biol. **139**, 1307–1315 (1997).
- 130. Williamson, T. L. & Cleveland, D. W. Slowing of axonal transport is a very early event in the toxicity of ALSlinked SOD1 mutants to motor neurons. Nat. Neurosci. 2, 50-56 (1999).
- 131 Magrané, J., Cortez, C., Gan, W.-B. & Manfredi, G. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models. Hum. Mol. Genet. 23, 1413-1424 (2014).
- 132. Gordon, D. et al. Single-copy expression of an amyotrophic lateral sclerosis-linked TDP-43 mutation (M337V) in BAC transgenic mice leads to altered stress granule dynamics and progressive motor dysfunction. Neurobiol. Dis. 121, 148-162 (2019)
- 133. Sleigh, J. N. et al. ALS mice carrying pathological mutant TDP-43, but not mutant FUS, display axonal transport defects in vivo. BioRxiv https://doi org/10.1101/438812 (2018).
- 134. Hardiman, O. et al. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 3, 17071 (2017).
- 135. Devoy, A. et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in "FUSDelta14" knockin mice. Brain 140, 2797-2805 (2017).
- 136. Marinkovic, P. et al. Axonal transport deficits and degeneration can evolve independently in mouse models of amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 109, 4296-4301 (2012).
- 137. Malik, B. et al. Absence of disturbed axonal transport in spinal and bulbar muscular atrophy. *Hum. Mol. Genet.* **20**, 1776–1786 (2011). 138. Sorbara, C. D. et al. Pervasive axonal transport
- deficits in multiple sclerosis models. Neuron 84, 1183-1190 (2014).

- 139. Morfini, G. et al. JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. *Nat. Neurosci.* **9**, 907–916 (2006).
- 140. Halievski, K., Kemp, M. Q., Breedlove, S. M., Miller, K. E. & Jordan, C. L. Non-cell-autonomous regulation of retrograde motoneuronal axonal transport in an SBMA mouse model. *eNeuro* **3**, e0062-16.2016 (2016).
- Wang, W. et al. The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons. Hum. Mol. Genet. 22, 4706-4719 (2013)
- 142. Morfini, G. A. et al. Inhibition of fast axonal transport by pathogenic SOD1 involves activation of p38 MAP kinase. PLOS ONE 8, e65235 (2013).
- 143. Moller, A., Bauer, C. S., Cohen, R. N., Webster, C. P. & De Vos, K. J. Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum. Mol. Genet. 26, 4668-4679 (2017).
- 144. Gibbs, K. L. et al. Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS. *Cell Death Dis.* **9**, 596 (2018).
- 145. Ruschel, J. et al. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury.
- Science **348**, 347–352 (2015). 146. Mar, F. M., Bonni, A. & Sousa, M. M. Cell intrinsic control of axon regeneration. EMBO Rep. 15. 254-263 (2014).
- 147. Clark, A. J. et al. Epothilone D accelerates disease progression in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. *Neuropathol. Appl. Neurobiol.* **44**, 590–605 (2018).
- 148. Reed, N. A. et al. Microtubule acetylation promotes kinesin-1 binding and transport. Curr. Biol. 16, 2166-2172 (2006).
- 149. Dompierre, J. P. et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J. Neurosci. **27**, 3571–3583 (2007).
- 150. d'Ydewalle, C. et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease, Nat. Med. 17. 968-974 (2011).
- 151. Mo, Z. et al. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. *Nat. Commun.* **9**, 1007 (2018). 152. Taes, I. et al. *Hdac6* deletion delays disease
- progression in the SOD1^{G93A} mouse model of ALS. Hum. Mol. Genet. 22, 1783-1790 (2013).
- 153. Kalinski, A. L. et al. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition. J. Cell Biol. **218**, 1871–1890 (2019)
- 154. Zhang, K. et al. Defective axonal transport of Rab7 GTPase results in dysregulated trophic signaling. J. Neurosci. 33, 7451-7462 (2013).
- 155. Cioni, J.-M. et al. Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176, 56-72 (2019).
- 156. Zhu, Y. B. & Sheng, Z. H. Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice. J. Biol. Chem. **286**, 23432–23440 (2011).
- 157. Perlson, E. et al. A switch in retrograde signaling from survival to stress in rapid-onset neurodegeneration. J. Neurosci. 29, 9903-9917 (2009)
- 158. Fu, M. & Holzbaur, E. L. F. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. J. Cell Biol. 202, 495–508 (2013).
- 159. Lee, S., Pant, H. C. & Shea, T. B. Divergent and convergent roles for kinases and phosphatases in neurofilament dynamics. J. Cell Sci. **127**, 4064–4077 (2014).
- 160. Stevenson, A. et al. Riluzole protects against glutamate-induced slowing of neurofilament axonal transport. Neurosci. Lett. 454, 161-164 (2009).
- 161 Tortarolo M et al Persistent activation of p38 mitogen-activated protein kinase in a mouse model of familial amyotrophic lateral sclerosis correlates with disease progression. Mol. Cell. Neurosci. 23, 180-192 (2003).
- 162. Ackerley, S. et al. p38α stress-activated protein kinase phosphorylates neurofilaments and is associated with neurofilament pathology in amyotrophic lateral sclerosis. Mol. Cell. Neurosci. 26, 354-364 (2004).
- 163. Dewil, M., dela Cruz, V. F., van den Bosch, L. & Robberecht, W. Inhibition of p38 mitogen activated protein kinase activation and mutant SOD1^{G9} induced motor neuron death. Neurobiol. Dis. 26, 332-341 (2007).

- 164. Chico, L. K., Van Eldik, L. J. & Watterson, D. M. Targeting protein kinases in central nervous system disorders. *Nat. Rev. Drug Discov.* 8, 892–909 (2009).
- Hetman, M. & Gozdz, A. Role of extracellular signal regulated kinases 1 and 2 in neuronal survival. *Eur. J. Biochem.* 271, 2050–2055 (2004).
- Hur, E.-M. & Zhou, F.-O. CSK3 signalling in neural development. Nat. Rev. Neurosci. 11, 539–551 (2010).
- Coffey, E. T. Nuclear and cytosolic JNK signalling in neurons. *Nat. Rev. Neurosci.* 15, 285–299 (2014).
- 168. Ally, S., Larson, A. G., Barlan, K., Rice, S. E. & Gelfand, V. I. Opposite-polarity motors activate one another to trigger cargo transport in live cells. J. Cell Biol. 187, 1071–1082 (2009).
- 169. Schuster, M. et al. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a

nonuniform microtubule array. *Mol. Biol. Cell* **22**, 3645–3657 (2011).

- 170. Wu, C., Watts, M. E. & Rubin, L. L. MAP4K4 activation mediates motor neuron degeneration in amyotrophic lateral sclerosis. *Cell Rep.* 26, 1143–1156 (2019).
- 171. Xie, Y. et al. Endolysosomal deficits augment mitochondria pathology in spinal motor neurons of asymptomatic fALS mice. *Neuron* 87, 355–370 (2015).

Acknowledgements

The authors' work is supported by the Medical Research Council Career Development Award (MR/S006990/1 to J.N.S.), a Wellcome Trust Postdoctoral Fellowship for Clinicians (110043/Z/15/Z to A.M.R.), a Wellcome Trust Senior Investigator Award (107116/Z/15/Z to G.S.), the European Union's Horizon 2020 Research and Innovation programme under grant agreement 739572 (to G.S.) and a UK Dementia Research Institute Foundation award (to G.S.).

Author contributions

All authors contributed to the researching, writing and editing of this Review.

Competing interests

The authors declare no competing interests.

Peer review information

Nature Reviews Neurology thanks K. De Vos and other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

DATABASES

Online Mendelian Inheritance in Man: http://www.omim.org/